• This record comes from PubMed

Effect of Diets with the Addition of Edible Insects on the Development of Atherosclerotic Lesions in ApoE/LDLR-/- Mice

. 2024 Jul 01 ; 25 (13) : . [epub] 20240701

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
21-47159L Czech Science Foundation (GAČR)
LM2023064) METRO FOOD- CZ
Subsidy Polish Ministry of Education and Science

Foods enriched with insects can potentially prevent several health disorders, including cardiovascular diseases, by reducing inflammation and improving antioxidant status. In this study, Tenebrio molitor and Gryllus assimilis were selected to determine the effect on the development of atherosclerosis in ApoE/LDLR-/- mice. Animals were fed AIN-93G-based diets (control) with 10% Tenebrio molitor (TM) and 10% Gryllus assimilis (GA) for 8 weeks. The nutritional value as well as antioxidant activity of selected insects were determined. The lipid profile, liver enzyme activity, and the fatty acid composition of liver and adipose tissue of model mice were evaluated. Quantitative analysis of atherosclerotic lesions in the entire aorta was performed using the en face method, and for aortic roots, the cross-section method was used. The antioxidant status of the GA cricket was significantly higher compared to the TM larvae. The results showed that the area of atherosclerosis (en face method) was not significantly different between groups. Dietary GA reduced plaque formation in the aortic root; additionally, significant differences were observed in sections at 200 and 300 µm compared to other groups. Furthermore, liver enzyme ALT activity was lower in insect-fed groups compared to the control group. The finding suggests that a diet containing edible insect GA potentially prevents atherosclerotic plaque development in the aortic root, due to its high antioxidant activity.

See more in PubMed

Roth G.A., Mensah G.A., Fuster V. The global burden of cardiovascular diseases and risks: A compass for global action. J. Am. Coll. Cardiol. 2020;76:2980–2981. doi: 10.1016/j.jacc.2020.11.021. PubMed DOI

Kobiyama K., Ley K. Atherosclerosis: A chronic inflammatory disease with an autoimmune component. Circ. Res. 2018;123:1118–1120. doi: 10.1161/CIRCRESAHA.118.313816. PubMed DOI PMC

Boren J., Chapman M.J., Krauss R.M., Packard C.J., Bentzon J.F., Binder C.J., Daemen M.J., Demer L.L., Hegele R.A., Nicholls S.J., et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020;41:2313–2330. doi: 10.1093/eurheartj/ehz962. PubMed DOI PMC

Goldstein J.L., Brown M.S. A century of cholesterol and coronaries: From plaques to genes to statins. Cell. 2015;161:161–172. doi: 10.1016/j.cell.2015.01.036. PubMed DOI PMC

Greenow K., Pearce N.J., Ramji D.P. The key role of apolipoprotein E in atherosclerosis. J. Mol. Med. 2005;83:329–342. doi: 10.1007/s00109-004-0631-3. PubMed DOI

Knowles J.W., Maeda N. Genetic modifiers of atherosclerosis in mice. Atheroscler. Thromb. Vasc. Biol. 2000;20:2336–2345. doi: 10.1161/01.ATV.20.11.2336. PubMed DOI PMC

Frostegård J. Immunity, atherosclerosis and cardiovascular disease. BMC Med. 2013;11:117. doi: 10.1186/1741-7015-11-117. PubMed DOI PMC

Kaminsky L.A., German C., Imboden M., Ozemek C., Peterman J.E., Brubaker P.H. The importance of healthy lifestyle behaviors in the prevention of cardiovascular disease. Prog. Cardiovasc. Dis. 2022;70:8–15. doi: 10.1016/j.pcad.2021.12.001. PubMed DOI

D’Antonio V., Battista N., Sacchetti G., Di Mattia C., Serafini M. Functional properties of edible insects: A systematic review. Nutr. Res. Rev. 2023;36:98–119. doi: 10.1017/S0954422421000366. PubMed DOI

Payne C.L., Scarborough P., Rayner M., Nonaka K. A systematic review of nutrient composition data available for twelve commercially available edible insects, and comparison with reference values. Trends Food Sci. Technol. 2016;47:69–77. doi: 10.1016/j.tifs.2015.10.012. DOI

Nowakowski A.C., Miller A.C., Miller M.E., Xiao H., Wu X. Potential health benefits of edible insects. Crit. Rev. Food Sci. Nutr. 2022;62:3499–3508. doi: 10.1080/10408398.2020.1867053. PubMed DOI

Stull V.J., Finer E., Bergmans R.S., Febvre H.P., Longhurst C., Manter D.K., Patz J.A., Weir T.L. Impact of edible cricket consumption on gut microbiota in healthy adults, a double-blind, randomized crossover trial. Sci. Rep. 2018;8:10762. doi: 10.1038/s41598-018-29032-2. PubMed DOI PMC

Chu W.M. Tumor necrosis factor. Cancer Lett. 2013;328:222–225. doi: 10.1016/j.canlet.2012.10.014. PubMed DOI PMC

Rehman K.U., Hollah C., Wiesotzki K., Heinz V., Aganovic K., Rehman R.U., Petrusan J.I., Zheng L., Zhang J., Sohail S., et al. Insect-derived chitin and chitosan: A still unexploited resource for the edible insect sector. Sustainability. 2023;15:4864. doi: 10.3390/su15064864. DOI

Xia W., Liu P., Zhang J., Chen J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll. 2011;25:170–179. doi: 10.1016/j.foodhyd.2010.03.003. DOI

Ahn M.Y., Hwang J.S., Kim M.J., Park K.K. Antilipidemic effects and gene expression profiling of the glycosaminoglycans from cricket in rats on a high fat diet. Arch. Pharm. Res. 2016;39:926–936. doi: 10.1007/s12272-016-0749-1. PubMed DOI

Ahn M.Y., Han J.W., Hwang J.S., Yun E.Y., Lee B.M. Anti-inflammatory effect of glycosaminoglycan derived from Gryllus bimaculatus (a type of cricket, insect) on adjuvant-treated chronic arthritis rat model. Part A J. Toxicol. Environ. Health A. 2014;77:1332–1345. doi: 10.1080/15287394.2014.951591. PubMed DOI

Ferrante A.W., Jr. Obesity-induced inflammation: A metabolic dialogue in the language of inflammation. J. Intern. Med. 2007;262:408–414. doi: 10.1111/j.1365-2796.2007.01852.x. PubMed DOI

Quah Y., Tong S.R., Bojarska J., Giller K., Tan S.A., Ziora Z.M., Esatbeyoglu T., Chai T.T. Bioactive peptide discovery from edible insects for potential applications in human health and agriculture. Molecules. 2023;28:1233. doi: 10.3390/molecules28031233. PubMed DOI PMC

EFSA European Parliament and Council. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. OJEU 2015. [(accessed on 11 May 2024)]. Available online: https://eurlex.europa.eu/eli/reg/2015/2283/oj.

Raheem D., Carrascosa C., Oluwole O.B., Nieuwland M., Saraiva A., Millán R., Raposo A. Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2019;59:2169–2188. doi: 10.1080/10408398.2018.1440191. PubMed DOI

Jongema Y. List of Edible Insects of the World (April 1, 2017)—WUR. [(accessed on 10 May 2024)]. Available online: https://www.wur.nl/en/research-results/chair-groups/plant-sciences/laboratory-of-entomology/edible-insects/worldwide-species-list.htm.

Oliveira L.A., Pereira S.M.S., Dias K.A., da Silva Paes S., Grancieri M., Jimenez L.G.S., Della L.C.M. Nutritional content, amino acid profile, and protein properties of edible insects (Tenebrio molitor and Gryllus assimilis) powders at different stages of development. J. Food Compos. Anal. 2024;125:105804. doi: 10.1016/j.jfca.2023.105804. DOI

Gonzalez-de la Rosa T., Montserrat-de la Paz S., Rivero-Pino F. Production, characterisation, and biological properties of Tenebrio molitor-derived oligopeptides. Food Chem. 2024;450:139400. doi: 10.1016/j.foodchem.2024.139400. PubMed DOI

Khatun H., Claes J., Smets R., De Winne A., Akhtaruzzaman M., Van Der Borght M. Characterization of freeze-dried, oven-dried and blanched house crickets (Acheta domesticus) and Jamaican field crickets (Gryllus assimilis) by means of their physicochemical properties and volatile compounds. Eur. Food Res. Technol. 2021;247:1291–1305. doi: 10.1007/s00217-021-03709-x. DOI

Oonincx D.G.A.B., Finke M.D. Nutritional value of insects and ways to manipulate their composition. JIFF. 2021;7:639–659. doi: 10.3920/JIFF2020.0050. DOI

Adámková A., Mlček J., Adámek M., Borkovcová M., Bednářová M., Hlobilová V., Knížková I., Juríková T. Tenebrio molitor (Coleoptera: Tenebrionidae)—Optimization of rearing conditions to obtain desired nutritional values. J. Insect Sci. 2020;20:24. doi: 10.1093/jisesa/ieaa100. PubMed DOI PMC

da Rosa Machado C., Thys R.C.S. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. Innov. Food Sci. Emerg. Technol. 2019;56:102180. doi: 10.1016/j.ifset.2019.102180. DOI

Araújo R.R.S., dos Santos Benfica T.A.R., Ferraz V.P., Santos E.M. Nutritional composition of insects Gryllus assimilis and Zophobas morio: Potential foods harvested in Brazil. J. Food Compos. Anal. 2019;76:22–26. doi: 10.1016/j.jfca.2018.11.005. DOI

Kulma M., Petříčková D., Kurečka M., Kotíková Z., Táborský J., Michlová T., Kouřimská L. Effect of carrot supplementation on nutritional value of insects: A case study with Jamaican field cricket (Gryllus assimilis) JIFF. 2022;8:621–629. doi: 10.3920/JIFF2021.0138. DOI

Syahrulawal L., Torske M.O., Sapkota R., Næss G., Khanal P. Improving the nutritional values of yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) larvae as an animal feed ingredient: A review. J. Anim. Sci. Biotechnol. 2023;14:146. doi: 10.1186/s40104-023-00945-x. PubMed DOI PMC

Wu R.A., Ding Q., Yin L., Chi X., Sun N., He R., Luo L., Ma H., Li Z. Comparison of the nutritional value of mysore thorn borer (Anoplophora chinensis) and mealworm larva (Tenebrio molitor): Amino acid, fatty acid, and element profiles. Food Chem. 2020;323:126818. doi: 10.1016/j.foodchem.2020.126818. PubMed DOI

Santa-María C., López-Enríquez S., Montserrat-de la Paz S., Geniz I., Reyes-Quiroz M.E., Moreno M., Palomares F., Sobrino F., Alba G. Update on anti-inflammatory molecular mechanisms induced by oleic acid. Nutrients. 2023;15:224. doi: 10.3390/nu15010224. PubMed DOI PMC

Guasch-Ferré M., Babio N., Martínez-González M.A., Corella D., Ros E., Martin-Pelaez S., Estruch R., Arós F., Gómez-Gracia E., Fiol M., et al. Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. Am. J. Clin. Nutr. 2015;102:1563–1573. doi: 10.3945/ajcn.115.116046. PubMed DOI

Zielińska E., Baraniak B., Karaś M. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients. 2017;9:970. doi: 10.3390/nu9090970. PubMed DOI PMC

Messina C.M., Gaglio R., Morghese M., Tolone M., Arena R., Moschetti G., Santulli A., Francesca N., Settanni L. Microbiological profile and bioactive properties of insect powders used in food and feed formulations. Foods. 2019;8:400. doi: 10.3390/foods8090400. PubMed DOI PMC

Pino F.R., Gálvez R.P., Carpio F.J.E., Guadix E.M. Evaluation of Tenebrio molitor protein as a source of peptides for modulating physiological processes. Food Funct. 2020;11:4376–4386. doi: 10.1039/D0FO00734J. PubMed DOI

Mancini S., Fratini F., Turchi B., Mattioli S., Dal Bosco A., Tuccinardi T., Nozic S., Paci G. Former food stuff products in Tenebrio molitor rearing: Effects on growth, chemical composition, microbiological load, and antioxidant status. Animals. 2019;9:484. doi: 10.3390/ani9080484. PubMed DOI PMC

Murugu D.K., Onyango A.N., Ndiritu A.K., Osuga I.M., Xavier C., Nakimbugwe D., Tanga C.M. From farm to fork: Crickets as alternative source of protein, minerals, and vitamins. Front. Nutr. 2021;8:704002. doi: 10.3389/fnut.2021.704002. PubMed DOI PMC

Kopecká A., Kouřimská L., Škvorová P., Kurečka M., Kulma M. Effect of Temperature on the Nutritional Quality and Growth Parameters of Yellow Mealworm (Tenebrio molitor L.): A Preliminary Study. Appl. Sci. 2024;14:2610. doi: 10.3390/app14062610. DOI

Di Mattia C., Battista N., Sacchetti G., Serafini M. Antioxidant activities in vitro of water and liposoluble extracts obtained by different species of edible insects and invertebrates. Front. Nutr. 2019;6:106. doi: 10.3389/fnut.2019.00106. PubMed DOI PMC

Oonincx D.G., Van Broekhoven S., Van Huis A., Van Loon J.J. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE. 2015;10:e0144601. doi: 10.1371/journal.pone.0144601. PubMed DOI PMC

Dreassi E., Cito A., Zanfini A., Materozzi L., Botta M., Francardi V. Dietary fatty acids influence the growth and fatty acid composition of the yellow mealworm Tenebrio molitor (Coleoptera: Tenebrionidae) Lipids. 2017;52:285–294. doi: 10.1007/s11745-016-4220-3. PubMed DOI

Ruschioni S., Loreto N., Foligni R., Mannozzi C., Raffaelli N., Zamporlini F., Pasquini M., Roncolini A., Cardinali F., Osimani A., et al. Addition of olive pomace to feeding substrate affects growth performance and nutritional value of mealworm (Tenebrio molitor L.) larvae. Foods. 2020;9:317. doi: 10.3390/foods9030317. PubMed DOI PMC

Baek M., Kim M.A., Kwon Y.S., Hwang J.S., Goo T.W., Jun M., Yun E.Y. Effects of processing methods on nutritional composition and antioxidant activity of mealworm (Tenebrio molitor) larvae. Entomol. Res. 2019;49:284–293. doi: 10.1111/1748-5967.12363. DOI

Jozefiak A., Engberg R.M. Insect proteins as a potential source of antimicrobial peptides in livestock production. A review. J. Anim. Feed Sci. 2017;26:87–99. doi: 10.22358/jafs/69998/2017. DOI

de Carvalho N.M., Madureira A.R., Pintado M.E. The potential of insects as food sources–a review. Crit. Rev. Food Sci. Nutr. 2020;60:3642–3652. doi: 10.1080/10408398.2019.1703170. PubMed DOI

Raubenheimer D., Rothman J.M. Nutritional ecology of entomophagy in humans and other primates. Annu. Rev. Entomol. 2013;58:141–160. doi: 10.1146/annurev-ento-120710-100713. PubMed DOI

Reeves P.G., Nielsen F.H., Fahey G.C. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J. Nutr. 1993;123:1939–1951. doi: 10.1093/jn/123.11.1939. PubMed DOI

Seo M., Goo T.W., Chung M.Y., Baek M., Hwang J.S., Kim M.A., Yun E.Y. Tenebrio molitor larvae inhibit adipogenesis through AMPK and MAPKs signaling in 3T3-L1 adipocytes and obesity in high-fat diet-induced obese mice. Int. J. Mol. Sci. 2017;18:518. doi: 10.3390/ijms18030518. PubMed DOI PMC

Oibiokpa F.I., Akanya H.O., Jigam A.A., Saidu A.N., Egwim E.C. Protein quality of four indigenous edible insect species in Nigeria. Food Sci. Hum. Wellness. 2018;7:175–183. doi: 10.1016/j.fshw.2018.05.003. DOI

Weru J., Chege P., Kinyuru J. Nutritional potential of edible insects: A systematic review of published data. Int. J. Trop. Insect Sci. 2021;41:2015–2037. doi: 10.1007/s42690-021-00464-0. DOI

Escobar-Ortiz A., Hernández-Saavedra D., Lizardi-Mendoza J., Pérez-Ramírez I.F., Mora-Izaguirre O., Ramos-Gómez M., Reynoso-Camacho R. Consumption of cricket (Acheta domesticus) flour decreases insulin resistance and fat accumulation in rats fed with high-fat and-fructose diet. J. Food Biochem. 2022;46:e14269. doi: 10.1111/jfbc.14269. PubMed DOI

Choi R.Y., Ham J.R., Ryu H.S., Lee S.S., Miguel M.A., Paik M.J., Ji M., Park K.W., Kang K.Y., Lee H.I., et al. Defatted Tenebrio molitor larva fermentation extract modifies steatosis, inflammation and intestinal microflora in chronic alcohol-fed rats. Nutrients. 2020;12:1426. doi: 10.3390/nu12051426. PubMed DOI PMC

Stocker R., Keaney J.F., Jr. Role of oxidative modifications in atherosclerosis. Physiol. Rev. 2004;84:1381–1478. doi: 10.1152/physrev.00047.2003. PubMed DOI

Yamada J., Tomiyama H., Yambe M., Koji Y., Motobe K., Shiina K., Yamamoto Y., Yamashina A. Elevated serum levels of alanine aminotransferase and gamma glutamyltransferase are markers of inflammation and oxidative stress independent of the metabolic syndrome. Atherosclerosis. 2006;189:198–205. doi: 10.1016/j.atherosclerosis.2005.11.036. PubMed DOI

Ahn M.Y., Kim B.J., Kim H.J., Jin J.M., Yoon H.J., Hwang J.S., Lee B.M. Anti-diabetic activity of field cricket glycosaminoglycan by ameliorating oxidative stress. BMC Complement. Med. Ther. 2020;20:232. doi: 10.1186/s12906-020-03027-x. PubMed DOI PMC

Glick N.R., Fischer M.H. The role of essential fatty acids in human health. Evid. Based Complement. Altern. Med. 2013;18:268–289. doi: 10.1177/2156587213488788. DOI

Wang D., Bai Y.Y., Li J.H., Zhang C.X. Nutritional value of the field cricket (Gryllus testaceus Walker) J. Insect Sci. 2004;11:275–283. doi: 10.1111/j.1744-7917.2004.tb00424.x. DOI

Paul A., Frederich M., Megido R.C., Alabi T., Malik P., Uyttenbroeck R., Francis F., Blecker C., Haubruge E., Lognay G., et al. Insect fatty acids: A comparison of lipids from three Orthopterans and Tenebrio molitor L. larvae. J. Asia-Pac. Entomol. 2017;20:337–340. doi: 10.1016/j.aspen.2017.02.001. DOI

Green C.J., Hodson L. The influence of dietary fat on liver fat accumulation. Nutrients. 2014;6:5018–5033. doi: 10.3390/nu6115018. PubMed DOI PMC

Rosqvist F., Kullberg J., Ståhlman M., Cedernaes J., Heurling K., Johansson H.E., Iggman D., Wilking H., Larsson A., Eriksson O., et al. Overeating saturated fat promotes fatty liver and ceramides compared with polyunsaturated fat: A randomized trial. J. Clin. Endocrinol. Metab. 2019;104:6207–6219. doi: 10.1210/jc.2019-00160. PubMed DOI PMC

Ullah R., Rauf N., Nabi G., Ullah H., Shen Y., Zhou Y.D., Fu J. Role of nutrition in the pathogenesis and prevention of non-alcoholic fatty liver disease: Recent updates. Int. J. Biol. Sci. 2019;15:265. doi: 10.7150/ijbs.30121. PubMed DOI PMC

Shen H., Eguchi K., Kono N., Fujiu K., Matsumoto S., Shibata M., Oishi-Tanaka Y., Komuro I., Arai H., Nagai R., et al. Saturated fatty acid palmitate aggravates neointima formation by promoting smooth muscle phenotypic modulation. Arterioscler. Thromb. Vasc. Biol. 2013;33:2596–2607. doi: 10.1161/ATVBAHA.113.302099. PubMed DOI

Staiger K., Staiger H., Weigert C., Haas C., Häring H.U., Kellerer M. Saturated, but not unsaturated, fatty acids induce apoptosis of human coronary artery endothelial cells via nuclear factor-κB activation. Diabetes. 2006;55:3121–3126. doi: 10.2337/db06-0188. PubMed DOI

Kinyuru J.N., Mogendi J.B., Riwa C.A., Ndung’u N.W. Edible insects—A novel source of essential nutrients for human diet: Learning from traditional knowledge. Anim. Front. 2015;5:14–19.

Khosravi M., Poursaleh A., Ghasempour G., Farhad S., Najafi M. The effects of oxidative stress on the development of atherosclerosis. J. Biol. Chem. 2019;400:711–732. doi: 10.1515/hsz-2018-0397. PubMed DOI

D’Antonio V., Serafini M., Battista N. Dietary modulation of oxidative stress from edible insects: A mini-review. Front. Nutr. 2021;8:642551. doi: 10.3389/fnut.2021.642551. PubMed DOI PMC

Kurdi P., Chaowiwat P., Weston J., Hansawasdi C. Studies on microbial quality, protein yield, and antioxidant properties of some frozen edible insects. Int. J. Food Sci. Technol. 2021;2021:5580976. doi: 10.1155/2021/5580976. PubMed DOI PMC

Gumul D., Oracz J., Kowalski S., Mikulec A., Skotnicka M., Karwowska K., Areczuk A. Bioactive compounds and antioxidant composition of nut bars with addition of various edible insect flours. Molecules. 2023;28:3556. doi: 10.3390/molecules28083556. PubMed DOI PMC

Malekmohammad K., Sewell R.D., Rafieian-Kopaei M. Antioxidants and atherosclerosis: Mechanistic aspects. Biomolecules. 2019;9:301. doi: 10.3390/biom9080301. PubMed DOI PMC

Muscolo A., Mariateresa O., Giulio T., Mariateresa R. Oxidative stress: The role of antioxidant phytochemicals in the prevention and treatment of diseases. Int. J. Mol. Sci. 2024;25:3264. doi: 10.3390/ijms25063264. PubMed DOI PMC

Kulma M., Kouřimská L., Plachý V., Božik M., Adámková A., Vrabec V. Effect of sex on the nutritional value of house cricket, Acheta domestica L. Food Chem. 2019;272:267–272. doi: 10.1016/j.foodchem.2018.08.049. PubMed DOI

Franczyk-Żarów M., Szymczyk B., Kostogrys R.B. Effects of dietary conjugated linoleic acid and selected vegetable oils or vitamin E on fatty acid composition of hen egg yolks. Ann. Anim. Sci. 2019;19:173–188. doi: 10.2478/aoas-2018-0052. DOI

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. PubMed DOI

Brand-Williams W., Cuvelier M.E., Berset C.L.W.T. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995;28:25–30. doi: 10.1016/S0023-6438(95)80008-5. DOI

Benzie I.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. PubMed DOI

Bonthu S., Heistad D.D., Chappell D.A., Lamping K.G., Faraci F.M. Atherosclerosis, vascular remodeling, and impairment of endothelium-dependent relaxation in genetically altered hyperlipidemic mice. Arterioscler. Thromb. Vasc. Biol. 1997;17:2333–2340. doi: 10.1161/01.ATV.17.11.2333. PubMed DOI

Jawien J., Nastalek P., Korbut R. Mouse models of experimental atherosclerosis. J. Physiol. Pharmacol. 2004;55:503–517. PubMed

Yamada N., Shimano H., Yazaki Y. Role of apolipoprotein E in lipoprotein metabolism and in the process of atherosclerosis. J. Atheroscler. Thromb. 1995;2((Suppl. S1)):S29–S33. doi: 10.5551/jat1994.2.Supplement1_S29. PubMed DOI

Man J.J., Beckman J.A., Jaffe I.Z. Sex as a biological variable in atherosclerosis. Circ. Res. 2020;126:1297–1319. doi: 10.1161/CIRCRESAHA.120.315930. PubMed DOI PMC

Franczyk-Żarów M., Kostogrys R.B., Szymczyk B., Jawień J., Gajda M., Cichocki T., Wojnar L., Chlopicki S., Pisulewski P.M. Functional effects of eggs, naturally enriched with conjugated linoleic acid, on the blood lipid profile, development of atherosclerosis and composition of atherosclerotic plaque in apolipoprotein E and low-density lipoprotein receptor double-knockout mice (ApoE/LDLR−/−) Br. J. Nutr. 2008;99:49–58. doi: 10.1017/S0007114507793893. PubMed DOI

Centa M., Ketelhuth D.F., Malin S., Gisterå A. Quantification of atherosclerosis in mice. J. Vis. Exp. 2019;148:e59828. doi: 10.3791/59828. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...