Phase Behavior of Gradient Copolymer Melts with Different Gradient Strengths Revealed by Mesoscale Simulations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UJEP-IGA-TC-2019-53-02-2
Univerzite Jan Evangelista Purkyne v Ústí nad Labem
CZ.02.1.01/0.0/0.0/17_048/0007411
Ministerstvo školství, mládeže a tělovýchovy
PubMed
33114271
PubMed Central
PMC7690882
DOI
10.3390/polym12112462
PII: polym12112462
Knihovny.cz E-zdroje
- Klíčová slova
- block copolymers, dissipative particle dynamics, gradient copolymers, gradient strength, microphase separation, nanomaterials, self-assembly,
- Publikační typ
- časopisecké články MeSH
Design and preparation of functional nanomaterials with specific properties requires precise control over their microscopic structure. A prototypical example is the self-assembly of diblock copolymers, which generate highly ordered structures controlled by three parameters: the chemical incompatibility between blocks, block size ratio and chain length. Recent advances in polymer synthesis have allowed for the preparation of gradient copolymers with controlled sequence chemistry, thus providing additional parameters to tailor their assembly. These are polydisperse monomer sequence, block size distribution and gradient strength. Here, we employ dissipative particle dynamics to describe the self-assembly of gradient copolymer melts with strong, intermediate, and weak gradient strength and compare their phase behavior to that of corresponding diblock copolymers. Gradient melts behave similarly when copolymers with a strong gradient are considered. Decreasing the gradient strength leads to the widening of the gyroid phase window, at the expense of cylindrical domains, and a remarkable extension of the lamellar phase. Finally, we show that weak gradient strength enhances chain packing in gyroid structures much more than in lamellar and cylindrical morphologies. Importantly, this work also provides a link between gradient copolymers morphology and parameters such as chemical incompatibility, chain length and monomer sequence as support for the rational design of these nanomaterials.
Zobrazit více v PubMed
Bates F.S., Fredrickson G.H. Block copolymers—Designer soft materials. Phys. Today. 1999;52:32–38. doi: 10.1063/1.882522. DOI
Feng H.B., Lu X.Y., Wang W.Y., Kang N.G., Mays J.W. Block Copolymers: Synthesis, Self-Assembly, and Applications. Polymers. 2017;9:494. doi: 10.3390/polym9100494. PubMed DOI PMC
Yin J., Chen Y., Zhang Z.H., Han X. Stimuli-Responsive Block Copolymer-Based Assemblies for Cargo Delivery and Theranostic Applications. Polymers. 2016;8:268. doi: 10.3390/polym8070268. PubMed DOI PMC
Eggers S., Eckert T., Abetz V. Double thermoresponsive block-random copolymers with adjustable phase transition temperatures: From block-like to gradient-like behavior. J. Polym. Sci. Pol. Chem. 2018;56:399–411. doi: 10.1002/pola.28906. DOI
Rabyk M., Destephen A., Lapp A., King S., Noirez L., Billon L., Hruby M., Borisov O., Stepanek P., Deniau E. Interplay of Thermosensitivity and pH Sensitivity of Amphiphilic Block-Gradient Copolymers of Dimethylaminoethyl Acrylate and Styrene. Macromolecules. 2018;51:5219–5233. doi: 10.1021/acs.macromol.8b00621. DOI
Cui J., Ma Z., Pan L., An C.H., Liu J., Zhou Y.F., Li Y.S. Self-healable gradient copolymers. Mater. Chem. Front. 2019;3:464–471. doi: 10.1039/C8QM00592C. DOI
Zhao R.B., Shea K.J. Gradient Methylidene-Ethylidene Copolymer via C1 Polymerization: An Ersatz Gradient Ethylene-Propylene Copolymer. Acs Macro Lett. 2015;4:584–587. doi: 10.1021/acsmacrolett.5b00218. PubMed DOI
Matyjaszewski K. Advanced Materials by Atom Transfer Radical Polymerization. Adv. Mater. 2018;30:1706441–1706462. doi: 10.1002/adma.201706441. PubMed DOI
Ogura Y., Takenaka M., Sawamoto M., Terashima T. Fluorous Gradient Copolymers via in-Situ Transesterification of a Perfluoromethacrylate in Tandem Living Radical Polymerization: Precision Synthesis and Physical Properties. Macromolecules. 2018;51:864–871. doi: 10.1021/acs.macromol.7b02512. DOI
Posel Z., Svoboda M., Limpouchova Z., Lisal M., Prochazka K. Adsorption of amphiphilic graft copolymers in solvents selective for the grafts on a lyophobic surface: A coarse-grained simulation study. Phys. Chem. Chem. Phys. 2018;20:6533–6547. PubMed
Wang W.Y., Lu W., Goodwin A., Wang H.Q., Yin P.C., Kang N.G., Hong K.L., Mays J.W. Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry. Prog. Polym. Sci. 2019;95:1–31. doi: 10.1016/j.progpolymsci.2019.04.002. DOI
Sigle J.L., Clough A., Zhou J., White J.L. Controlling Macroscopic Properties by Tailoring Nanoscopic Interfaces in Tapered Copolymers. Macromolecules. 2015;48:5714–5722. doi: 10.1021/acs.macromol.5b01215. DOI
Hodrokoukes P., Floudas G., Pispas S., Hadjichristidis N. Microphase separation in normal and inverse tapered block copolymers of polystyrene and polyisoprene. 1. Phase state. Macromolecules. 2001;34:650–657. doi: 10.1021/ma001479i. DOI
Alam M.M., Jack K.S., Hill D.J.T., Whittaker A.K., Peng H. Gradient copolymers—Preparation, properties and practice. Eur. Polym. J. 2019;116:394–414. doi: 10.1016/j.eurpolymj.2019.04.028. DOI
Kim J., Gray M.K., Zhou H.Y., Nguyen S.T., Torkelson J.M. Polymer blend compatibilization by gradient copolymer addition during melt processing: Stabilization of dispersed phase to static coarsening. Macromolecules. 2005;38:1037–1040. doi: 10.1021/ma047549t. DOI
Tao Y., Kim J., Torkelson J.M. Achievement of quasi-nano structured polymer blends by solid-state shear pulverization and compatibilization by gradient copolymer addition. Polymer. 2006;47:6773–6781. doi: 10.1016/j.polymer.2006.07.041. DOI
Mok M.M., Kim J., Torkelson J.M. Gradient copolymers with broad glass transition temperature regions: Design of purely interphase compositions for damping applications. J. Polym. Sci. Pol. Phys. 2008;46:48–58. doi: 10.1002/polb.21341. DOI
Aksimentiev A., Holyst R. Phase behavior of gradient copolymers. J. Chem. Phys. 1999;111:2329–2339. doi: 10.1063/1.479504. DOI
Lefebvre M.D., de la Cruz M.O., Shull K.R. Phase segregation in gradient copolymer melts. Macromolecules. 2004;37:1118–1123. doi: 10.1021/ma035141a. DOI
Jiang R., Jin Q.H., Li B.H., Ding D.T., Wickham R.A., Shi A.C. Phase behavior of gradient copolymers. Macromolecules. 2008;41:5457–5465. doi: 10.1021/ma8002517. DOI
Tito N.B., Milner S.T., Lipson J.E.G. Self-Assembly of Lamellar Microphases in Linear Gradient Copolymer Melts. Macromolecules. 2010;43:10612–10620. doi: 10.1021/ma102296r. DOI
Mok M.M., Pujari S., Burghardt W.R., Dettmer C.M., Nguyen S.T., Ellison C.J., Torkelson J.M. Microphase separation and shear alignment of gradient copolymers: Melt rheology and small-angle X-ray scattering analysis. Macromolecules. 2008;41:5818–5829. doi: 10.1021/ma8009454. DOI
Mok M.M., Kim J., Wong C.L.H., Marrou S.R., Woo D.J., Dettmer C.M., Nguyen S.T., Ellison C.J., Shull K.R., Torkelson J.M. Glass Transition Breadths and Composition Profiles of Weakly, Moderately, and Strongly Segregating Gradient Copolymers: Experimental Results and Calculations from Self-Consistent Mean-Field Theory. Macromolecules. 2009;42:7863–7876. doi: 10.1021/ma9009802. DOI
Ganesan V., Kumar N.A., Pryamitsyn V. Blockiness and Sequence Polydispersity Effects on the Phase Behavior and Interfacial Properties of Gradient Copolymers. Macromolecules. 2012;45:6281–6297. doi: 10.1021/ma301136y. DOI
Jiang R., Wang Z., Yin Y.H., Li B.H., Shi A.C. Effects of compositional polydispersity on gradient copolymer melts. J. Chem. Phys. 2013;138:074906. doi: 10.1063/1.4792200. PubMed DOI
Pandav G., Pryamitsyn V., Gallow K.C., Loo Y.L., Genzer J., Ganesan V. Phase behavior of gradient copolymer solutions: A Monte Carlo simulation study. Soft Matter. 2012;8:6471–6482. doi: 10.1039/c2sm25577d. DOI
Pakula T., Matyjaszewski K. Copolymers with controlled distribution of comonomers along the chain. 1. Structure, thermodynamics and dynamic properties of gradient copolymers. Computer simulation. Macromol. Theor. Simul. 1996;5:987–1006. doi: 10.1002/mats.1996.040050514. DOI
Sun D.C., Guo H.X. Monte Carlo Studies on the Interfacial Properties and Interfacial Structures of Ternary Symmetric Blends with Gradient Copolymers. J. Phys. Chem. B. 2012;116:9512–9522. doi: 10.1021/jp3020172. PubMed DOI
Sun D.C., Guo H.X. Influence of compositional gradient on the phase behavior of ternary symmetric homopolymer-copolymer blends: A Monte Carlo study. Polymer. 2011;52:5922–5932. doi: 10.1016/j.polymer.2011.10.039. DOI
Fredrickson G.H., Milner S.T., Leibler L. Multicritical Phenomena and Microphase Ordering in Random Block Copolymer Melts. Macromolecules. 1992;25:6341–6354. doi: 10.1021/ma00049a034. DOI
Skvor J., Posel Z. Simulation Aspects of Lamellar Morphology: Incommensurability Effect. Macromol. Theor. Simul. 2015;24:141–151. doi: 10.1002/mats.201400079. DOI
Posel Z., Rousseau B., Lisal M. Scaling behaviour of different polymer models in dissipative particle dynamics of unentangled melts. Mol. Simulat. 2014;40:1274–1289. doi: 10.1080/08927022.2013.869803. DOI
Karatrantos A., Composto R.J., Winey K.I., Kroger M., Clarke N. Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review. Polymers. 2019;11:876. doi: 10.3390/polym11050876. PubMed DOI PMC
Posel Z., Posocco P. Tuning the Properties of Nanogel Surfaces by Grafting Charged Alkylamine Brushes. Nanomaterials. 2019;9:1514. doi: 10.3390/nano9111514. PubMed DOI PMC
Guskova O.A., Seidel C. Mesoscopic Simulations of Morphological Transitions of Stimuli-Responsive Diblock Copolymer Brushes. Macromolecules. 2011;44:671–682. doi: 10.1021/ma102349k. DOI
Posocco P., Hassan Y.M., Barandiaran I., Kortaberria G., Pricl S., Fermeglia M. Combined Mesoscale/Experimental Study of Selective Placement of Magnetic Nanoparticles in Diblock Copolymer Films via Solvent Vapor Annealing. J. Phys. Chem. C. 2016;120:7403–7411. doi: 10.1021/acs.jpcc.6b01050. DOI
Posel Z., Posocco P., Fermeglia M., Lisal M., Pricl S. Modeling hierarchically structured nanoparticle/diblock copolymer systems. Soft Matter. 2013;9:2936–2946. doi: 10.1039/c2sm27360h. DOI
Posocco P., Posel Z., Fermeglia M., Lisal M., Pricl S. A molecular simulation approach to the prediction of the morphology of self-assembled nanoparticles in diblock copolymers. J. Mater. Chem. 2010;20:10511–10520. doi: 10.1039/c0jm01561j. DOI
Posel Z., Posocco P., Lisal M., Fermeglia M., Pricl S. Highly grafted polystyrene/polyvinylpyridine polymer gold nanoparticles in a good solvent: Effects of chain length and composition. Soft Matter. 2016;12:3600–3611. doi: 10.1039/C5SM02867A. PubMed DOI
Karatrantos A., Clarke N., Kroger M. Modeling of Polymer Structure and Conformations in Polymer Nanocomposites from Atomistic to Mesoscale: A Review. Polym. Rev. 2016;56:385–428. doi: 10.1080/15583724.2015.1090450. DOI
Posel Z., Svoboda M., Colina C.M., Lisal M. Flow and aggregation of rod-like proteins in slit and cylindrical pores coated with polymer brushes: An insight from dissipative particle dynamics. Soft Matter. 2017;13:1634–1645. doi: 10.1039/C6SM02751B. PubMed DOI
Espanol P., Warren P.B. Perspective: Dissipative particle dynamics. J. Chem. Phys. 2017;146:150901. doi: 10.1063/1.4979514. PubMed DOI
Groot R.D., Madden T.J. Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 1998;108:8713–8724. doi: 10.1063/1.476300. DOI
Martinez-Veracoechea F.J., Escobedo F.A. Simulation of the gyroid phase in off-lattice models of pure diblock copolymer melts. J. Chem. Phys. 2006;125:104907. doi: 10.1063/1.2345652. PubMed DOI
Plimpton S. Fast Parallel Algorithms for Short-Range Molecular-Dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI
Nguyen T.D., Plimpton S.J. Accelerating dissipative particle dynamics simulations for soft matter systems. Comp. Mater. Sci. 2015;100:173–180. doi: 10.1016/j.commatsci.2014.10.068. DOI
Beranek P., Posel Z. Phase Behavior of Semiflexible-Flexible Diblock Copolymer Melt: Insight from Mesoscale Modeling. J. Nanosci. Nanotechno. 2016;16:7832–7835. doi: 10.1166/jnn.2016.12548. DOI
Gavrilov A.A., Kudryavtsev Y.V., Chertovich A.V. Phase diagrams of block copolymer melts by dissipative particle dynamics simulations. J. Chem. Phys. 2013;139:224901. doi: 10.1063/1.4837215. PubMed DOI
Brown J.R., Sides S.W., Hall L.M. Phase Behavior of Tapered Diblock Copolymers from Self-Consistent Field Theory. Acs Macro Lett. 2013;2:1105–1109. doi: 10.1021/mz400546h. PubMed DOI
Brown J.R., Seo Y., Maula T.A.D., Hall L.M. Fluids density functional theory and initializing molecular dynamics simulations of block copolymers. J. Chem. Phys. 2016;144:124904. doi: 10.1063/1.4943982. PubMed DOI
Brown J.R., Seo Y.M., Sides S.W., Hall L.M. Unique Phase Behavior of Inverse Tapered Block Copolymers: Self Consistent Field Theory and Molecular Dynamics Simulations. Macromolecules. 2017;50:5619–5626. doi: 10.1021/acs.macromol.7b00522. DOI