Phase Behavior of Polydisperse Y-Shaped Polymer Brushes under Good Solvent Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38475403
PubMed Central
PMC10934012
DOI
10.3390/polym16050721
PII: polym16050721
Knihovny.cz E-zdroje
- Klíčová slova
- Y-shaped brush, dissipative particle dynamics, ripple phase, self-assembly, surface,
- Publikační typ
- časopisecké články MeSH
Y-shaped polymer brushes represent a special class of binary mixed polymer brushes, in which a combination of different homopolymers leads to unique phase behavior. While most theoretical and simulation studies use monodisperse models, experimental systems are always polydisperse. This discrepancy hampers linking theoretical and experimental results. In this theoretical study, we employed dissipative particle dynamics to study the influence of polydispersity on the phase behavior of Y-shaped brushes grafted to flat surfaces under good solvent conditions. Polydispersity was kept within experimentally achievable values and was modeled via Schulz-Zimm distribution. In total, 10 systems were considered, thus covering the phase behavior of monodisperse, partially polydisperse and fully polydisperse systems. Using such generic representation of real polymers, we observed a rippled structure and aggregates in monodisperse systems. In addition, polydisperse brushes formed a stable perforated layer not observed previously in monodisperse studies, and influenced the stability of the remaining phases. Although the perforated layer was experimentally observed under good solvent conditions and in the melt state, further confirmation of its presence in systems under good solvent conditions required mapping real polymers onto mesoscale models that reflected, for example, different polymer rigidity, and excluded volume effects or direct influence of the surface, just to mention a few parameters. Finally, in this work, we show that mesoscale modeling successfully describes polydisperse models, which opens the way for rapid exploring of complex systems such as polydisperse Y-shaped brushes in selective or bad solvents or under non-equilibrium conditions.
Zobrazit více v PubMed
Chen W.L., Cordero R., Tran H., Ober C.K. Polymer Brushes: Novel Surfaces for Future Materials. Macromolecules. 2017;50:4089–4113. doi: 10.1021/acs.macromol.7b00450. DOI
Hou W.M., Liu Y.Z., Zhao H.Y. Surface Nanostructures Based on Assemblies of Polymer Brushes. Chempluschem. 2020;85:998–1007. doi: 10.1002/cplu.202000112. PubMed DOI
Li M.X., Pester C.W. Mixed Polymer Brushes for “Smart” Surfaces. Polymers. 2020;12:1553. doi: 10.3390/polym12071553. PubMed DOI PMC
Zhao B., Zhu L. Mixed Polymer Brush-Grafted Particles: A New Class of Environmentally Responsive Nanostructured Materials. Macromolecules. 2009;42:9369–9383. doi: 10.1021/ma902042x. DOI
Zoppe J.O., Ataman N.C., Mocny P., Wang J., Moraes J., Klok H.A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017;117:4667. doi: 10.1021/acs.chemrev.7b00093. PubMed DOI
Ma S.H., Zhang X.Q., Yu B., Zhou F. Brushing up functional materials. NPG Asia Mater. 2019;11:24. doi: 10.1038/s41427-019-0121-2. DOI
Zhulina E., Balazs A.C. Designing patterned surfaces by grafting Y-shaped copolymers. Macromolecules. 1996;29:2667–2673. doi: 10.1021/ma951396f. DOI
Minko S., Müller M., Usov D., Scholl A., Froeck C., Stamm M. Lateral versus perpendicular segregation in mixed polymer brushes: Art. Phys. Rev. Lett. 2002;88:035502. doi: 10.1103/PhysRevLett.88.035502. PubMed DOI
Yin Y.H., Jiang R., Li B.H., Jin Q.H., Ding D.T., Shi A.C. Self-assembly of grafted Y-shaped triblock copolymers in solutions. J. Chem. Phys. 2008;129:154903. doi: 10.1063/1.2992079. PubMed DOI
Wang J.F., Müller M. Microphase Separation of Mixed Polymer Brushes: Dependence of the Morphology on Grafting Density, Composition, Chain-Length Asymmetry, Solvent Quality, and Selectivity. J. Phys. Chem. B. 2009;113:11384–11402. doi: 10.1021/jp903161j. PubMed DOI
Dodd P.M., Jayaraman A. Monte carlo simulations of polydisperse polymers grafted on spherical surfaces. J. Polym. Sci. Pol. Phys. 2012;50:694–705. doi: 10.1002/polb.23057. DOI
Jiao G.S., Li Y., Qian H.J., Lu Z.Y. Computer simulation study of polydispersity effect on the phase behavior of short diblock copolymers. Polymer. 2016;96:6–12. doi: 10.1016/j.polymer.2016.04.065. DOI
Qi S.H., Klushin L.I., Skvortsov A.M., Schmid F. Polydisperse Polymer Brushes: Internal Structure, Critical Behavior, and Interaction with Flow. Macromolecules. 2016;49:9665–9683. doi: 10.1021/acs.macromol.6b02026. DOI
Klushin L.I., Skvortsov A.M., Qi S., Schmid F. Polydisperse Brush with the Linear Density Profile. Polym. Sci. Ser. C+ 2018;60:84–94. doi: 10.1134/S1811238218020121. DOI
Zimm B.H. Apparatus and Methods for Measurement and Interpretation of the Angular Variation of Light Scattering—Preliminary Results on Polystyrene Solutions. J. Chem. Phys. 1948;16:1099–1116. doi: 10.1063/1.1746740. DOI
Patil R.R., Turgman-Cohen S., Srogl J., Kiserow D., Genzer J. On-Demand Degrafting and the Study of Molecular Weight and Grafting Density of Poly(methyl methacrylate) Brushes on Flat Silica Substrates. Langmuir. 2015;31:2372–2381. doi: 10.1021/la5044766. PubMed DOI
Gao H.M., Liu H., Lu Z.Y., Sun Z.Y., An L.J. The structures of thin layer formed by microphase separation of grafted Y-shaped block copolymers in solutions. J. Chem. Phys. 2013;138:2372–2381. doi: 10.1063/1.4809988. PubMed DOI
Yin Y.H., Jiang R., Wang Z., Li B.H., Shi A.C. Influence of Grafting Point Distribution on the Surface Structures of Y-Shaped Polymer Brushes in Solution. Langmuir. 2016;32:7467–7475. doi: 10.1021/acs.langmuir.6b01448. PubMed DOI
Miliou K., Gergidis L.N., Vlahos C. Mixed brushes consisting of oppositely charged Y-shaped polymers in salt free, monovalent, and divalent salt solutions. J. Polym. Sci. 2020;58:1757–1770. doi: 10.1002/pol.20200141. DOI
Fridrich P., Posel Z. Self-Assembly of Y-Shaped Polymer Brushes with Low Poly-Dispersity. Mater. Proc. 2022;9:26.
Julthongpiput D., Lin Y.H., Teng J., Zubarev E.R., Tsukruk V.V. Y-shaped polymer brushes: Nanoscale switchable surfaces. Langmuir. 2003;19:7832–7836. doi: 10.1021/la035007j. DOI
Zhang B., Li Y.P., Ai P., Sa Z.P., Zhao Y.L., Li M., Wang D., Sha K. Y-Shaped Diblock Copolymer with Epoxy-Based Block of Poly(glycidyl methacrylate): Synthesis, Characterization, and Its Morphology Study. J. Polym. Sci. Pol. Chem. 2009;47:5509–5526. doi: 10.1002/pola.23602. DOI
Bao C.H., Tang S.D., Horton J.M., Jiang X.M., Tang P., Qiu F., Zhu L., Zhao B. Effect of Overall Grafting Density on Microphase Separation of Mixed Homopolymer Brushes Synthesized from Y-Initiator-Functionalized Silica Particles. Macromolecules. 2012;45:8027–8036. doi: 10.1021/ma301300k. DOI
Bao C.H., Tang S.D., Wright R.A.E., Tang P., Qiu F., Zhu L., Zhao B. Effect of Molecular Weight on Lateral Microphase Separation of Mixed Homopolymer Brushes Grafted on Silica Particles. Macromolecules. 2014;47:6824–6835. doi: 10.1021/ma501474m. DOI
Tonhauser C., Golriz A.A., Moers C., Klein R., Butt H.J., Frey H. Stimuli-Responsive Y-Shaped Polymer Brushes Based on Junction-Point-Reactive Block Copolymers. Adv. Mater. 2012;24:5559–5563. doi: 10.1002/adma.201202105. PubMed DOI
Huang J., He T.T., He X.M., Xu J.Q., Zuo B., Wang X.P. Fabrication of V-Shaped Brushes Consisting of Two Highly Incompatible Arms of PEG and Fluorinated PMMA and Their Protein-Resistance Performance. J. Polym. Sci. Pol. Chem. 2016;54:2599–2610. doi: 10.1002/pola.28138. DOI
Li J.J., Zhou Y.N., Luo Z.H. Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation. Chem. Eng. J. 2017;322:693–701. doi: 10.1016/j.cej.2017.04.074. DOI
Wei W., Kim T.Y., Balamurugan A., Sun J., Chen R., Ghosh A., Rodolakis F., McChesney J.L., Lakkham A., Evans P.G., et al. Phase Behavior of Mixed Polymer Brushes Grown from Ultrathin Coatings. ACS Macro Lett. 2019;8:1086–1090. doi: 10.1021/acsmacrolett.9b00501. PubMed DOI
Liu Y.Z., Hou W.M., Zhao H.Y. Synthesis of Y-Shaped Polymer Brushes on Silica Particles and Hierarchical Surface Structures Fabricated by the Coassembly Approach. Macromolecules. 2020;53:5001–5014. doi: 10.1021/acs.macromol.0c00397. DOI
Pivkin I.V., Karniadakis G.E. A new method to impose no-slip boundary conditions in dissipative particle dynamics. J. Comput. Phys. 2005;207:114–128. doi: 10.1016/j.jcp.2005.01.006. DOI
Español P., Warren P.B. Perspective: Dissipative particle dynamics. J. Chem. Phys. 2017;146:150901. doi: 10.1063/1.4979514. PubMed DOI
Skvor J., Posel Z. Simulation Aspects of Lamellar Morphology: Incommensurability Effect. Macromol. Theor. Simul. 2015;24:141–151. doi: 10.1002/mats.201400079. DOI
Karatrantos A., Composto R.J., Winey K.I., Kröger M., Clarke N. Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review. Polymers. 2019;11:876. doi: 10.3390/polym11050876. PubMed DOI PMC
Posel Z., Posocco P., Fermeglia M., Lísal M., Pricl S. Modeling hierarchically structured nanoparticle/diblock copolymer systems. Soft Matter. 2013;9:2936–2946. doi: 10.1039/c2sm27360h. DOI
Posel Z., Posocco P. Tuning the Properties of Nanogel Surfaces by Grafting Charged Alkylamine Brushes. Nanomaterials. 2019;9:1514. doi: 10.3390/nano9111514. PubMed DOI PMC
Beránek P., Posocco P., Posel Z. Phase Behavior of Gradient Copolymer Melts with Different Gradient Strengths Revealed by Mesoscale Simulations. Polymers. 2020;12:2462. doi: 10.3390/polym12112462. PubMed DOI PMC
Posel Z., Svoboda M., Colina C.M., Lísal M. Flow and aggregation of rod-like proteins in slit and cylindrical pores coated with polymer brushes: An insight from dissipative particle dynamics. Soft Matter. 2017;13:1634–1645. doi: 10.1039/C6SM02751B. PubMed DOI
Groot R.D., Madden T.J. Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 1998;108:8713–8724. doi: 10.1063/1.476300. DOI
Plimpton S. Fast Parallel Algorithms for Short-Range Molecular-Dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI
Nguyen T.D., Plimpton S.J. Accelerating dissipative particle dynamics simulations for soft matter systems. Comp. Mater. Sci. 2015;100:173–180. doi: 10.1016/j.commatsci.2014.10.068. DOI
Rehse S., Mecke K., Magerle R. Characterization of the dynamics of block copolymer microdomains with local morphological measures. Phys. Rev. E. 2008;77:051805. doi: 10.1103/PhysRevE.77.051805. PubMed DOI
Raczkowska J., Bernasik A., Budkowski A., Cyganik P., Rysz J., Raptis I., Czuba P. Pattern guided structure formation in polymer films of asymmetric blends. Surf. Sci. 2006;600:1004–1011. doi: 10.1016/j.susc.2005.12.033. DOI
Schubert E., Sander J., Ester M., Kriegel H.P., Xu X.W. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. ACM Trans. Database Syst. 2017;42:3. doi: 10.1145/3068335. DOI
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.
Gavrilov A.A., Kudryavtsev Y.V., Chertovich A.V. Phase diagrams of block copolymer melts by dissipative particle dynamics simulations. J. Chem. Phys. 2013;139:224901. doi: 10.1063/1.4837215. PubMed DOI
Posel Z., Rousseau B., Lisal M. Scaling behaviour of different polymer models in dissipative particle dynamics of unentangled melts. Mol. Simulat. 2014;40:1274–1289. doi: 10.1080/08927022.2013.869803. DOI
Posel Z., Posocco P., Lisal M., Fermeglia M., Pricl S. Highly grafted polystyrene/polyvinylpyridine polymer gold nanoparticles in a good solvent: Effects of chain length and composition. Soft Matter. 2016;12:3600–3611. doi: 10.1039/C5SM02867A. PubMed DOI
Guskova O.A., Seidel C. Mesoscopic Simulations of Morphological Transitions of Stimuli-Responsive Diblock Copolymer Brushes. Macromolecules. 2011;44:671–682. doi: 10.1021/ma102349k. DOI
Karatrantos A., Clarke N., Kroger M. Modeling of Polymer Structure and Conformations in Polymer Nanocomposites from Atomistic to Mesoscale: A Review. Polym. Rev. 2016;56:385–428. doi: 10.1080/15583724.2015.1090450. DOI