Phase Behavior of Polydisperse Y-Shaped Polymer Brushes under Good Solvent Conditions

. 2024 Mar 06 ; 16 (5) : . [epub] 20240306

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38475403

Y-shaped polymer brushes represent a special class of binary mixed polymer brushes, in which a combination of different homopolymers leads to unique phase behavior. While most theoretical and simulation studies use monodisperse models, experimental systems are always polydisperse. This discrepancy hampers linking theoretical and experimental results. In this theoretical study, we employed dissipative particle dynamics to study the influence of polydispersity on the phase behavior of Y-shaped brushes grafted to flat surfaces under good solvent conditions. Polydispersity was kept within experimentally achievable values and was modeled via Schulz-Zimm distribution. In total, 10 systems were considered, thus covering the phase behavior of monodisperse, partially polydisperse and fully polydisperse systems. Using such generic representation of real polymers, we observed a rippled structure and aggregates in monodisperse systems. In addition, polydisperse brushes formed a stable perforated layer not observed previously in monodisperse studies, and influenced the stability of the remaining phases. Although the perforated layer was experimentally observed under good solvent conditions and in the melt state, further confirmation of its presence in systems under good solvent conditions required mapping real polymers onto mesoscale models that reflected, for example, different polymer rigidity, and excluded volume effects or direct influence of the surface, just to mention a few parameters. Finally, in this work, we show that mesoscale modeling successfully describes polydisperse models, which opens the way for rapid exploring of complex systems such as polydisperse Y-shaped brushes in selective or bad solvents or under non-equilibrium conditions.

Zobrazit více v PubMed

Chen W.L., Cordero R., Tran H., Ober C.K. Polymer Brushes: Novel Surfaces for Future Materials. Macromolecules. 2017;50:4089–4113. doi: 10.1021/acs.macromol.7b00450. DOI

Hou W.M., Liu Y.Z., Zhao H.Y. Surface Nanostructures Based on Assemblies of Polymer Brushes. Chempluschem. 2020;85:998–1007. doi: 10.1002/cplu.202000112. PubMed DOI

Li M.X., Pester C.W. Mixed Polymer Brushes for “Smart” Surfaces. Polymers. 2020;12:1553. doi: 10.3390/polym12071553. PubMed DOI PMC

Zhao B., Zhu L. Mixed Polymer Brush-Grafted Particles: A New Class of Environmentally Responsive Nanostructured Materials. Macromolecules. 2009;42:9369–9383. doi: 10.1021/ma902042x. DOI

Zoppe J.O., Ataman N.C., Mocny P., Wang J., Moraes J., Klok H.A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017;117:4667. doi: 10.1021/acs.chemrev.7b00093. PubMed DOI

Ma S.H., Zhang X.Q., Yu B., Zhou F. Brushing up functional materials. NPG Asia Mater. 2019;11:24. doi: 10.1038/s41427-019-0121-2. DOI

Zhulina E., Balazs A.C. Designing patterned surfaces by grafting Y-shaped copolymers. Macromolecules. 1996;29:2667–2673. doi: 10.1021/ma951396f. DOI

Minko S., Müller M., Usov D., Scholl A., Froeck C., Stamm M. Lateral versus perpendicular segregation in mixed polymer brushes: Art. Phys. Rev. Lett. 2002;88:035502. doi: 10.1103/PhysRevLett.88.035502. PubMed DOI

Yin Y.H., Jiang R., Li B.H., Jin Q.H., Ding D.T., Shi A.C. Self-assembly of grafted Y-shaped triblock copolymers in solutions. J. Chem. Phys. 2008;129:154903. doi: 10.1063/1.2992079. PubMed DOI

Wang J.F., Müller M. Microphase Separation of Mixed Polymer Brushes: Dependence of the Morphology on Grafting Density, Composition, Chain-Length Asymmetry, Solvent Quality, and Selectivity. J. Phys. Chem. B. 2009;113:11384–11402. doi: 10.1021/jp903161j. PubMed DOI

Dodd P.M., Jayaraman A. Monte carlo simulations of polydisperse polymers grafted on spherical surfaces. J. Polym. Sci. Pol. Phys. 2012;50:694–705. doi: 10.1002/polb.23057. DOI

Jiao G.S., Li Y., Qian H.J., Lu Z.Y. Computer simulation study of polydispersity effect on the phase behavior of short diblock copolymers. Polymer. 2016;96:6–12. doi: 10.1016/j.polymer.2016.04.065. DOI

Qi S.H., Klushin L.I., Skvortsov A.M., Schmid F. Polydisperse Polymer Brushes: Internal Structure, Critical Behavior, and Interaction with Flow. Macromolecules. 2016;49:9665–9683. doi: 10.1021/acs.macromol.6b02026. DOI

Klushin L.I., Skvortsov A.M., Qi S., Schmid F. Polydisperse Brush with the Linear Density Profile. Polym. Sci. Ser. C+ 2018;60:84–94. doi: 10.1134/S1811238218020121. DOI

Zimm B.H. Apparatus and Methods for Measurement and Interpretation of the Angular Variation of Light Scattering—Preliminary Results on Polystyrene Solutions. J. Chem. Phys. 1948;16:1099–1116. doi: 10.1063/1.1746740. DOI

Patil R.R., Turgman-Cohen S., Srogl J., Kiserow D., Genzer J. On-Demand Degrafting and the Study of Molecular Weight and Grafting Density of Poly(methyl methacrylate) Brushes on Flat Silica Substrates. Langmuir. 2015;31:2372–2381. doi: 10.1021/la5044766. PubMed DOI

Gao H.M., Liu H., Lu Z.Y., Sun Z.Y., An L.J. The structures of thin layer formed by microphase separation of grafted Y-shaped block copolymers in solutions. J. Chem. Phys. 2013;138:2372–2381. doi: 10.1063/1.4809988. PubMed DOI

Yin Y.H., Jiang R., Wang Z., Li B.H., Shi A.C. Influence of Grafting Point Distribution on the Surface Structures of Y-Shaped Polymer Brushes in Solution. Langmuir. 2016;32:7467–7475. doi: 10.1021/acs.langmuir.6b01448. PubMed DOI

Miliou K., Gergidis L.N., Vlahos C. Mixed brushes consisting of oppositely charged Y-shaped polymers in salt free, monovalent, and divalent salt solutions. J. Polym. Sci. 2020;58:1757–1770. doi: 10.1002/pol.20200141. DOI

Fridrich P., Posel Z. Self-Assembly of Y-Shaped Polymer Brushes with Low Poly-Dispersity. Mater. Proc. 2022;9:26.

Julthongpiput D., Lin Y.H., Teng J., Zubarev E.R., Tsukruk V.V. Y-shaped polymer brushes: Nanoscale switchable surfaces. Langmuir. 2003;19:7832–7836. doi: 10.1021/la035007j. DOI

Zhang B., Li Y.P., Ai P., Sa Z.P., Zhao Y.L., Li M., Wang D., Sha K. Y-Shaped Diblock Copolymer with Epoxy-Based Block of Poly(glycidyl methacrylate): Synthesis, Characterization, and Its Morphology Study. J. Polym. Sci. Pol. Chem. 2009;47:5509–5526. doi: 10.1002/pola.23602. DOI

Bao C.H., Tang S.D., Horton J.M., Jiang X.M., Tang P., Qiu F., Zhu L., Zhao B. Effect of Overall Grafting Density on Microphase Separation of Mixed Homopolymer Brushes Synthesized from Y-Initiator-Functionalized Silica Particles. Macromolecules. 2012;45:8027–8036. doi: 10.1021/ma301300k. DOI

Bao C.H., Tang S.D., Wright R.A.E., Tang P., Qiu F., Zhu L., Zhao B. Effect of Molecular Weight on Lateral Microphase Separation of Mixed Homopolymer Brushes Grafted on Silica Particles. Macromolecules. 2014;47:6824–6835. doi: 10.1021/ma501474m. DOI

Tonhauser C., Golriz A.A., Moers C., Klein R., Butt H.J., Frey H. Stimuli-Responsive Y-Shaped Polymer Brushes Based on Junction-Point-Reactive Block Copolymers. Adv. Mater. 2012;24:5559–5563. doi: 10.1002/adma.201202105. PubMed DOI

Huang J., He T.T., He X.M., Xu J.Q., Zuo B., Wang X.P. Fabrication of V-Shaped Brushes Consisting of Two Highly Incompatible Arms of PEG and Fluorinated PMMA and Their Protein-Resistance Performance. J. Polym. Sci. Pol. Chem. 2016;54:2599–2610. doi: 10.1002/pola.28138. DOI

Li J.J., Zhou Y.N., Luo Z.H. Mussel-inspired V-shaped copolymer coating for intelligent oil/water separation. Chem. Eng. J. 2017;322:693–701. doi: 10.1016/j.cej.2017.04.074. DOI

Wei W., Kim T.Y., Balamurugan A., Sun J., Chen R., Ghosh A., Rodolakis F., McChesney J.L., Lakkham A., Evans P.G., et al. Phase Behavior of Mixed Polymer Brushes Grown from Ultrathin Coatings. ACS Macro Lett. 2019;8:1086–1090. doi: 10.1021/acsmacrolett.9b00501. PubMed DOI

Liu Y.Z., Hou W.M., Zhao H.Y. Synthesis of Y-Shaped Polymer Brushes on Silica Particles and Hierarchical Surface Structures Fabricated by the Coassembly Approach. Macromolecules. 2020;53:5001–5014. doi: 10.1021/acs.macromol.0c00397. DOI

Pivkin I.V., Karniadakis G.E. A new method to impose no-slip boundary conditions in dissipative particle dynamics. J. Comput. Phys. 2005;207:114–128. doi: 10.1016/j.jcp.2005.01.006. DOI

Español P., Warren P.B. Perspective: Dissipative particle dynamics. J. Chem. Phys. 2017;146:150901. doi: 10.1063/1.4979514. PubMed DOI

Skvor J., Posel Z. Simulation Aspects of Lamellar Morphology: Incommensurability Effect. Macromol. Theor. Simul. 2015;24:141–151. doi: 10.1002/mats.201400079. DOI

Karatrantos A., Composto R.J., Winey K.I., Kröger M., Clarke N. Modeling of Entangled Polymer Diffusion in Melts and Nanocomposites: A Review. Polymers. 2019;11:876. doi: 10.3390/polym11050876. PubMed DOI PMC

Posel Z., Posocco P., Fermeglia M., Lísal M., Pricl S. Modeling hierarchically structured nanoparticle/diblock copolymer systems. Soft Matter. 2013;9:2936–2946. doi: 10.1039/c2sm27360h. DOI

Posel Z., Posocco P. Tuning the Properties of Nanogel Surfaces by Grafting Charged Alkylamine Brushes. Nanomaterials. 2019;9:1514. doi: 10.3390/nano9111514. PubMed DOI PMC

Beránek P., Posocco P., Posel Z. Phase Behavior of Gradient Copolymer Melts with Different Gradient Strengths Revealed by Mesoscale Simulations. Polymers. 2020;12:2462. doi: 10.3390/polym12112462. PubMed DOI PMC

Posel Z., Svoboda M., Colina C.M., Lísal M. Flow and aggregation of rod-like proteins in slit and cylindrical pores coated with polymer brushes: An insight from dissipative particle dynamics. Soft Matter. 2017;13:1634–1645. doi: 10.1039/C6SM02751B. PubMed DOI

Groot R.D., Madden T.J. Dynamic simulation of diblock copolymer microphase separation. J. Chem. Phys. 1998;108:8713–8724. doi: 10.1063/1.476300. DOI

Plimpton S. Fast Parallel Algorithms for Short-Range Molecular-Dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI

Nguyen T.D., Plimpton S.J. Accelerating dissipative particle dynamics simulations for soft matter systems. Comp. Mater. Sci. 2015;100:173–180. doi: 10.1016/j.commatsci.2014.10.068. DOI

Rehse S., Mecke K., Magerle R. Characterization of the dynamics of block copolymer microdomains with local morphological measures. Phys. Rev. E. 2008;77:051805. doi: 10.1103/PhysRevE.77.051805. PubMed DOI

Raczkowska J., Bernasik A., Budkowski A., Cyganik P., Rysz J., Raptis I., Czuba P. Pattern guided structure formation in polymer films of asymmetric blends. Surf. Sci. 2006;600:1004–1011. doi: 10.1016/j.susc.2005.12.033. DOI

Schubert E., Sander J., Ester M., Kriegel H.P., Xu X.W. DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN. ACM Trans. Database Syst. 2017;42:3. doi: 10.1145/3068335. DOI

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.

Gavrilov A.A., Kudryavtsev Y.V., Chertovich A.V. Phase diagrams of block copolymer melts by dissipative particle dynamics simulations. J. Chem. Phys. 2013;139:224901. doi: 10.1063/1.4837215. PubMed DOI

Posel Z., Rousseau B., Lisal M. Scaling behaviour of different polymer models in dissipative particle dynamics of unentangled melts. Mol. Simulat. 2014;40:1274–1289. doi: 10.1080/08927022.2013.869803. DOI

Posel Z., Posocco P., Lisal M., Fermeglia M., Pricl S. Highly grafted polystyrene/polyvinylpyridine polymer gold nanoparticles in a good solvent: Effects of chain length and composition. Soft Matter. 2016;12:3600–3611. doi: 10.1039/C5SM02867A. PubMed DOI

Guskova O.A., Seidel C. Mesoscopic Simulations of Morphological Transitions of Stimuli-Responsive Diblock Copolymer Brushes. Macromolecules. 2011;44:671–682. doi: 10.1021/ma102349k. DOI

Karatrantos A., Clarke N., Kroger M. Modeling of Polymer Structure and Conformations in Polymer Nanocomposites from Atomistic to Mesoscale: A Review. Polym. Rev. 2016;56:385–428. doi: 10.1080/15583724.2015.1090450. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...