• This record comes from PubMed

Tuning the Properties of Nanogel Surfaces by Grafting Charged Alkylamine Brushes

. 2019 Oct 24 ; 9 (11) : . [epub] 20191024

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Nanogels are chemically crosslinked polymeric nanoparticles endowed with high encapsulation ability, tunable size, ease of preparation, and responsiveness to external stimuli. The presence of specific functional groups on their surfaces provides an opportunity to tune their surface properties and direct their behavior. In this work, we used mesoscale modeling to describe conformational and mechanical properties of nanogel surfaces formed by crosslinked polyethylene glycol and polyethyleneimine, and grafted by charged alkylamine brushes of different lengths. Simulations show that both number of chains per area and chain length can be used to tune the properties of the coating. Properly selecting these two parameters allows switching from a hydrated, responsive coating to a dried, highly charged layer. The results also suggest that the scaling behavior of alkylamine brushes, e.g., the transition from a mushroom to semi-dilute brush, is only weakly coupled with the shielding ability of the coating and much more with its compressibility.

See more in PubMed

Chen L., Yan C., Zheng Z. Functional polymer surfaces for controlling cell behaviors. Mater. Today. 2018;21:38–59. doi: 10.1016/j.mattod.2017.07.002. DOI

Hui Y., Yi X., Hou F., Wibowo D., Zhang F., Zhao D., Gao H., Zhao C.-X. Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano. 2019;13:7410–7424. doi: 10.1021/acsnano.9b03924. PubMed DOI

Chen W.-L., Cordero R., Tran H., Ober C.K. 50th anniversary perspective: Polymer brushes: Novel surfaces for future materials. Macromolecules. 2017;50:4089–4113. doi: 10.1021/acs.macromol.7b00450. DOI

Badoux M., Billing M., Klok H.-A. Polymer brush interfaces for protein biosensing prepared by surface-initiated controlled radical polymerization. Polym. Chem. 2019;10:2925–2951. doi: 10.1039/C9PY00163H. DOI

Mullner M., Dodds S.J., Nguyen T.-H., Senyschyn D., Porter C.J.H., Boyd B.J., Caruso F. Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo. ACS Nano. 2015;9:1294–1304. doi: 10.1021/nn505125f. PubMed DOI

Faivre J., Shrestha B.R., Burdynska J., Xie G., Moldovan F., Delair T., Benayoun S., David L., Matyjaszewski K., Banquy X. Wear protection without surface modification using a synergistic mixture of molecular brushes and linear polymers. ACS Nano. 2017;11:1762–1769. doi: 10.1021/acsnano.6b07678. PubMed DOI

Yu Q., Ista L.K., Gu R., Zauscher S., Lopez G.P. Nanopatterned polymer brushes: Conformation, fabrication and applications. Nanoscale. 2016;8:680–700. doi: 10.1039/C5NR07107K. PubMed DOI

Wang Y., Wu J., Zhang D., Chen F., Fan P., Zhong M., Xiao S., Chang Y., Gong X., Yang J., et al. Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties. J. Mater. Chem. B. 2019;7:5762–5774. doi: 10.1039/C9TB01313J. PubMed DOI

Uz M., Bulmus V., Alsoy Altinkaya S. Effect of PEG grafting density and hydrodynamic volume on gold nanoparticle–cell interactions: An investigation on cell cycle, apoptosis, and DNA damage. Langmuir. 2016;32:5997–6009. doi: 10.1021/acs.langmuir.6b01289. PubMed DOI

Zhao C., Li L., Wang Q., Yu Q., Zheng J. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Langmuir. 2011;27:4906–4913. doi: 10.1021/la200061h. PubMed DOI

Emilsson G., Schoch R.L., Feuz L., Hook F., Lim R.Y.H., Dahlin A.B. Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to. ACS Appl. Mater. Interfaces. 2015;7:7505–7515. doi: 10.1021/acsami.5b01590. PubMed DOI

Peng S., Bhushan B. Smart polymer brushes and their emerging applications. RSC Adv. 2012;2:8557–8578. doi: 10.1039/c2ra20451g. DOI

Xu X., Billing M., Ruths M., Klok H.-A., Yu J. Structure and functionality of polyelectrolyte brushes: A surface force perspective. Chem. Asian J. 2018;13:3411–3436. doi: 10.1002/asia.201800920. PubMed DOI

Das S., Banik M., Chen G., Sinha S., Mukherjee R. Polyelectrolyte brushes: Theory, modelling, synthesis and applications. Soft Matter. 2015;11:8550–8583. doi: 10.1039/C5SM01962A. PubMed DOI

Arima Y., Iwata H. Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers. J. Mater. Chem. 2007;17:4079–4087. doi: 10.1039/b708099a. PubMed DOI

Tomita S., Soejima T., Shiraki K., Yoshimoto K. Enzymatic fingerprinting of structurally similar homologous proteins using polyion complex library constructed by tuning pegylated polyamine functionalities. Analyst. 2014;139:6100–6103. doi: 10.1039/C4AN01398K. PubMed DOI

Zou Y., Li D., Shen M., Shi X. Polyethylenimine-based nanogels for biomedical applications. Macromol. Biosci. 2019:e1900272. doi: 10.1002/mabi.201900272. PubMed DOI

Lou B., Beztsinna N., Mountrichas G., Van den Dikkenberg J.B., Pispas S., Hennink W.E. Small nanosized poly(vinyl benzyl trimethylammonium chloride) based polyplexes for siRNA delivery. Int. J. Pharm. 2017;525:388–396. doi: 10.1016/j.ijpharm.2017.03.036. PubMed DOI

Tamura A., Oishi M., Nagasaki Y. Efficient siRNA delivery based on pegylated and partially quaternized polyamine nanogels: Enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core. J. Control. Release. 2010;146:378–387. doi: 10.1016/j.jconrel.2010.05.031. PubMed DOI

Cavallaro G., Lazzara G., Milioto S., Parisi F., Evtugyn V., Rozhina E., Fakhrullin R. Nanohydrogel formation within the halloysite lumen for triggered and sustained release. ACS Appl. Mater. Interfaces. 2018;10:8265–8273. doi: 10.1021/acsami.7b19361. PubMed DOI

Myerson J.W., McPherson O., DeFrates K.G., Towslee J.H., Marcos-Contreras O.A., Shuvaev V.V., Braender B., Composto R.J., Muzykantov V.R., Eckmann D.M. Cross-linker-modulated nanogel flexibility correlates with tunable targeting to a sterically impeded endothelial marker. ACS Nano. 2019 doi: 10.1021/acsnano.9b04789. PubMed DOI PMC

Cuggino J.C., Blanco E.R.O., Gugliotta L.M., Alvarez Igarzabal C.I., Calderon M. Crossing biological barriers with nanogels to improve drug delivery performance. J. Control. Release. 2019;307:221–246. doi: 10.1016/j.jconrel.2019.06.005. PubMed DOI

Karg M., Pich A., Hellweg T., Hoare T., Lyon L.A., Crassous J.J., Suzuki D., Gumerov R.A., Schneider S., Potemkin I.I., et al. Nanogels and microgels: From model colloids to applications, recent developments, and future trends. Langmuir. 2019;35:6231–6255. doi: 10.1021/acs.langmuir.8b04304. PubMed DOI

Mauri E., Moroni I., Magagnin L., Masi M., Sacchetti A., Rossi F. Comparison between two different click strategies to synthesize fluorescent nanogels for therapeutic applications. React. Funct. Polym. 2016;105:35–44. doi: 10.1016/j.reactfunctpolym.2016.05.007. DOI

Esmaeilzadeh P., Groth T. Switchable and obedient interfacial properties that grant new biomedical applications. ACS Appl. Mater. Interfaces. 2019;11:25637–25653. doi: 10.1021/acsami.9b06253. PubMed DOI

Hajebi S., Rabiee N., Bagherzadeh M., Ahmadi S., Rabiee M., Roghani-Mamaqani H., Tahriri M., Tayebi L., Hamblin M.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 2019;92:1–18. doi: 10.1016/j.actbio.2019.05.018. PubMed DOI PMC

Brini E., Algaer E.A., Ganguly P., Li C., Rodriguez-Ropero F., Van der Vegt N.F.A. Systematic coarse-graining methods for soft matter simulations—A review. Soft Matter. 2013;9:2108–2119. doi: 10.1039/C2SM27201F. DOI

Posocco P., Posel Z., Fermeglia M., Lisal M., Pricl S. A molecular simulation approach to the prediction of the morphology of self-assembled nanoparticles in diblock copolymers. J. Mater. Chem. 2010;20:10511–10520. doi: 10.1039/c0jm01561j. DOI

Posel Z., Posocco P., Lisal M., Fermeglia M., Pricl S. Highly grafted polystyrene/polyvinylpyridine polymer gold nanoparticles in a good solvent: Effects of chain length and composition. Soft Matter. 2016;12:3600–3611. doi: 10.1039/C5SM02867A. PubMed DOI

Posel Z., Posocco P., Fermeglia M., Lisal M., Pricl S. Modeling hierarchically structured nanoparticle/diblock copolymer systems. Soft Matter. 2013;9:2936–2946. doi: 10.1039/c2sm27360h. DOI

Posocco P., Hassan Y.M., Barandiaran I., Kortaberria G., Pricl S., Fermeglia M. Combined mesoscale/experimental study of selective placement of magnetic nanoparticles in diblock copolymer films via solvent vapor annealing. J. Phys. Chem. C. 2016;120:7403–7411. doi: 10.1021/acs.jpcc.6b01050. DOI

Sologan M., Marson D., Polizzi S., Pengo P., Boccardo S., Pricl S., Posocco P., Pasquato L. Patchy and janus nanoparticles by self-organization of mixtures of fluorinated and hydrogenated alkanethiolates on the surface of a gold core. ACS Nano. 2016;10:9316–9325. doi: 10.1021/acsnano.6b03931. PubMed DOI

Posocco P., Gentilini C., Bidoggia S., Pace A., Franchi P., Lucarini M., Fermeglia M., Pricl S., Pasquato L. Self-organization of mixtures of fluorocarbon and hydrocarbon amphiphilic thiolates on the surface of gold nanoparticles. ACS Nano. 2012;6:7243–7253. doi: 10.1021/nn302366q. PubMed DOI

Groot R.D., Warren P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997;107:4423–4435. doi: 10.1063/1.474784. DOI

Hoogerbrugge P.J., Koelman J.M.V.A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 1992;19:155–160. doi: 10.1209/0295-5075/19/3/001. DOI

Anderson R.L., Bray D.J., Ferrante A.S., Noro M.G., Stott I.P., Warren P.B. Dissipative particle dynamics: Systematic parametrization using water-octanol partition coefficients. J. Chem. Phys. 2017;147:094503. doi: 10.1063/1.4992111. PubMed DOI

Tang X., Zou W., Koenig P.H., McConaughy S.D., Weaver M.R., Eike D.M., Schmidt M.J., Larson R.G. Multiscale modeling of the effects of salt and perfume raw materials on the rheological properties of commercial threadlike micellar solutions. J. Phys. Chem. B. 2017;121:2468–2485. doi: 10.1021/acs.jpcb.7b00257. PubMed DOI

Pivkin I.V., Karniadakis G.E. A new method to impose no-slip boundary conditions in dissipative particle dynamics. J. Comput. Phys. 2005;207:114–128. doi: 10.1016/j.jcp.2005.01.006. DOI

Warren P.B., Vlasov A., Anton L., Masters A.J. Screening properties of gaussian electrolyte models, with application to dissipative particle dynamics. J. Chem. Phys. 2013;138:204907. doi: 10.1063/1.4807057. PubMed DOI

Gonzalez-Melchor M., Mayoral E., Velazquez M.E., Alejandre J. Electrostatic interactions in dissipative particle dynamics using the Ewald sums. J. Chem. Phys. 2006;125:224107. doi: 10.1063/1.2400223. PubMed DOI

Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI

Dimitrov D., Milchev A., Binder K. Polymer brushes on flat and curved substrates: Scaling concepts and computer simulations. Macromol. Symp. 2007;252:47–57. doi: 10.1002/masy.200750605. DOI

Rodriguez-Ropero F., Van der Vegt N.F.A. Ionic specific effects on the structure, mechanics and interfacial softness of a polyelectrolyte brush. Faraday Discuss. 2013;160:297–309. doi: 10.1039/C2FD20072D. PubMed DOI

Weir M.P., Parnell A.J. Water soluble responsive polymer brushes. Polymers. 2011;3:2107–2132. doi: 10.3390/polym3042107. DOI

Wu T., Gong P., Szleifer I., Vlcek P., Subr V., Genzer J. Behavior of surface-anchored poly(acrylic acid) brushes with grafting density gradients on solid substrates:  1. Experiment. Macromolecules. 2007;40:8756–8764. doi: 10.1021/ma0710176. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...