Tuning the Properties of Nanogel Surfaces by Grafting Charged Alkylamine Brushes
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
31652985
PubMed Central
PMC6915512
DOI
10.3390/nano9111514
PII: nano9111514
Knihovny.cz E-resources
- Keywords
- adsorption, charged brushes, dissipative particle dynamics, nanogels, responsive surfaces, smart surfaces,
- Publication type
- Journal Article MeSH
Nanogels are chemically crosslinked polymeric nanoparticles endowed with high encapsulation ability, tunable size, ease of preparation, and responsiveness to external stimuli. The presence of specific functional groups on their surfaces provides an opportunity to tune their surface properties and direct their behavior. In this work, we used mesoscale modeling to describe conformational and mechanical properties of nanogel surfaces formed by crosslinked polyethylene glycol and polyethyleneimine, and grafted by charged alkylamine brushes of different lengths. Simulations show that both number of chains per area and chain length can be used to tune the properties of the coating. Properly selecting these two parameters allows switching from a hydrated, responsive coating to a dried, highly charged layer. The results also suggest that the scaling behavior of alkylamine brushes, e.g., the transition from a mushroom to semi-dilute brush, is only weakly coupled with the shielding ability of the coating and much more with its compressibility.
See more in PubMed
Chen L., Yan C., Zheng Z. Functional polymer surfaces for controlling cell behaviors. Mater. Today. 2018;21:38–59. doi: 10.1016/j.mattod.2017.07.002. DOI
Hui Y., Yi X., Hou F., Wibowo D., Zhang F., Zhao D., Gao H., Zhao C.-X. Role of nanoparticle mechanical properties in cancer drug delivery. ACS Nano. 2019;13:7410–7424. doi: 10.1021/acsnano.9b03924. PubMed DOI
Chen W.-L., Cordero R., Tran H., Ober C.K. 50th anniversary perspective: Polymer brushes: Novel surfaces for future materials. Macromolecules. 2017;50:4089–4113. doi: 10.1021/acs.macromol.7b00450. DOI
Badoux M., Billing M., Klok H.-A. Polymer brush interfaces for protein biosensing prepared by surface-initiated controlled radical polymerization. Polym. Chem. 2019;10:2925–2951. doi: 10.1039/C9PY00163H. DOI
Mullner M., Dodds S.J., Nguyen T.-H., Senyschyn D., Porter C.J.H., Boyd B.J., Caruso F. Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo. ACS Nano. 2015;9:1294–1304. doi: 10.1021/nn505125f. PubMed DOI
Faivre J., Shrestha B.R., Burdynska J., Xie G., Moldovan F., Delair T., Benayoun S., David L., Matyjaszewski K., Banquy X. Wear protection without surface modification using a synergistic mixture of molecular brushes and linear polymers. ACS Nano. 2017;11:1762–1769. doi: 10.1021/acsnano.6b07678. PubMed DOI
Yu Q., Ista L.K., Gu R., Zauscher S., Lopez G.P. Nanopatterned polymer brushes: Conformation, fabrication and applications. Nanoscale. 2016;8:680–700. doi: 10.1039/C5NR07107K. PubMed DOI
Wang Y., Wu J., Zhang D., Chen F., Fan P., Zhong M., Xiao S., Chang Y., Gong X., Yang J., et al. Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties. J. Mater. Chem. B. 2019;7:5762–5774. doi: 10.1039/C9TB01313J. PubMed DOI
Uz M., Bulmus V., Alsoy Altinkaya S. Effect of PEG grafting density and hydrodynamic volume on gold nanoparticle–cell interactions: An investigation on cell cycle, apoptosis, and DNA damage. Langmuir. 2016;32:5997–6009. doi: 10.1021/acs.langmuir.6b01289. PubMed DOI
Zhao C., Li L., Wang Q., Yu Q., Zheng J. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Langmuir. 2011;27:4906–4913. doi: 10.1021/la200061h. PubMed DOI
Emilsson G., Schoch R.L., Feuz L., Hook F., Lim R.Y.H., Dahlin A.B. Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to. ACS Appl. Mater. Interfaces. 2015;7:7505–7515. doi: 10.1021/acsami.5b01590. PubMed DOI
Peng S., Bhushan B. Smart polymer brushes and their emerging applications. RSC Adv. 2012;2:8557–8578. doi: 10.1039/c2ra20451g. DOI
Xu X., Billing M., Ruths M., Klok H.-A., Yu J. Structure and functionality of polyelectrolyte brushes: A surface force perspective. Chem. Asian J. 2018;13:3411–3436. doi: 10.1002/asia.201800920. PubMed DOI
Das S., Banik M., Chen G., Sinha S., Mukherjee R. Polyelectrolyte brushes: Theory, modelling, synthesis and applications. Soft Matter. 2015;11:8550–8583. doi: 10.1039/C5SM01962A. PubMed DOI
Arima Y., Iwata H. Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers. J. Mater. Chem. 2007;17:4079–4087. doi: 10.1039/b708099a. PubMed DOI
Tomita S., Soejima T., Shiraki K., Yoshimoto K. Enzymatic fingerprinting of structurally similar homologous proteins using polyion complex library constructed by tuning pegylated polyamine functionalities. Analyst. 2014;139:6100–6103. doi: 10.1039/C4AN01398K. PubMed DOI
Zou Y., Li D., Shen M., Shi X. Polyethylenimine-based nanogels for biomedical applications. Macromol. Biosci. 2019:e1900272. doi: 10.1002/mabi.201900272. PubMed DOI
Lou B., Beztsinna N., Mountrichas G., Van den Dikkenberg J.B., Pispas S., Hennink W.E. Small nanosized poly(vinyl benzyl trimethylammonium chloride) based polyplexes for siRNA delivery. Int. J. Pharm. 2017;525:388–396. doi: 10.1016/j.ijpharm.2017.03.036. PubMed DOI
Tamura A., Oishi M., Nagasaki Y. Efficient siRNA delivery based on pegylated and partially quaternized polyamine nanogels: Enhanced gene silencing activity by the cooperative effect of tertiary and quaternary amino groups in the core. J. Control. Release. 2010;146:378–387. doi: 10.1016/j.jconrel.2010.05.031. PubMed DOI
Cavallaro G., Lazzara G., Milioto S., Parisi F., Evtugyn V., Rozhina E., Fakhrullin R. Nanohydrogel formation within the halloysite lumen for triggered and sustained release. ACS Appl. Mater. Interfaces. 2018;10:8265–8273. doi: 10.1021/acsami.7b19361. PubMed DOI
Myerson J.W., McPherson O., DeFrates K.G., Towslee J.H., Marcos-Contreras O.A., Shuvaev V.V., Braender B., Composto R.J., Muzykantov V.R., Eckmann D.M. Cross-linker-modulated nanogel flexibility correlates with tunable targeting to a sterically impeded endothelial marker. ACS Nano. 2019 doi: 10.1021/acsnano.9b04789. PubMed DOI PMC
Cuggino J.C., Blanco E.R.O., Gugliotta L.M., Alvarez Igarzabal C.I., Calderon M. Crossing biological barriers with nanogels to improve drug delivery performance. J. Control. Release. 2019;307:221–246. doi: 10.1016/j.jconrel.2019.06.005. PubMed DOI
Karg M., Pich A., Hellweg T., Hoare T., Lyon L.A., Crassous J.J., Suzuki D., Gumerov R.A., Schneider S., Potemkin I.I., et al. Nanogels and microgels: From model colloids to applications, recent developments, and future trends. Langmuir. 2019;35:6231–6255. doi: 10.1021/acs.langmuir.8b04304. PubMed DOI
Mauri E., Moroni I., Magagnin L., Masi M., Sacchetti A., Rossi F. Comparison between two different click strategies to synthesize fluorescent nanogels for therapeutic applications. React. Funct. Polym. 2016;105:35–44. doi: 10.1016/j.reactfunctpolym.2016.05.007. DOI
Esmaeilzadeh P., Groth T. Switchable and obedient interfacial properties that grant new biomedical applications. ACS Appl. Mater. Interfaces. 2019;11:25637–25653. doi: 10.1021/acsami.9b06253. PubMed DOI
Hajebi S., Rabiee N., Bagherzadeh M., Ahmadi S., Rabiee M., Roghani-Mamaqani H., Tahriri M., Tayebi L., Hamblin M.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems. Acta Biomater. 2019;92:1–18. doi: 10.1016/j.actbio.2019.05.018. PubMed DOI PMC
Brini E., Algaer E.A., Ganguly P., Li C., Rodriguez-Ropero F., Van der Vegt N.F.A. Systematic coarse-graining methods for soft matter simulations—A review. Soft Matter. 2013;9:2108–2119. doi: 10.1039/C2SM27201F. DOI
Posocco P., Posel Z., Fermeglia M., Lisal M., Pricl S. A molecular simulation approach to the prediction of the morphology of self-assembled nanoparticles in diblock copolymers. J. Mater. Chem. 2010;20:10511–10520. doi: 10.1039/c0jm01561j. DOI
Posel Z., Posocco P., Lisal M., Fermeglia M., Pricl S. Highly grafted polystyrene/polyvinylpyridine polymer gold nanoparticles in a good solvent: Effects of chain length and composition. Soft Matter. 2016;12:3600–3611. doi: 10.1039/C5SM02867A. PubMed DOI
Posel Z., Posocco P., Fermeglia M., Lisal M., Pricl S. Modeling hierarchically structured nanoparticle/diblock copolymer systems. Soft Matter. 2013;9:2936–2946. doi: 10.1039/c2sm27360h. DOI
Posocco P., Hassan Y.M., Barandiaran I., Kortaberria G., Pricl S., Fermeglia M. Combined mesoscale/experimental study of selective placement of magnetic nanoparticles in diblock copolymer films via solvent vapor annealing. J. Phys. Chem. C. 2016;120:7403–7411. doi: 10.1021/acs.jpcc.6b01050. DOI
Sologan M., Marson D., Polizzi S., Pengo P., Boccardo S., Pricl S., Posocco P., Pasquato L. Patchy and janus nanoparticles by self-organization of mixtures of fluorinated and hydrogenated alkanethiolates on the surface of a gold core. ACS Nano. 2016;10:9316–9325. doi: 10.1021/acsnano.6b03931. PubMed DOI
Posocco P., Gentilini C., Bidoggia S., Pace A., Franchi P., Lucarini M., Fermeglia M., Pricl S., Pasquato L. Self-organization of mixtures of fluorocarbon and hydrocarbon amphiphilic thiolates on the surface of gold nanoparticles. ACS Nano. 2012;6:7243–7253. doi: 10.1021/nn302366q. PubMed DOI
Groot R.D., Warren P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997;107:4423–4435. doi: 10.1063/1.474784. DOI
Hoogerbrugge P.J., Koelman J.M.V.A. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. 1992;19:155–160. doi: 10.1209/0295-5075/19/3/001. DOI
Anderson R.L., Bray D.J., Ferrante A.S., Noro M.G., Stott I.P., Warren P.B. Dissipative particle dynamics: Systematic parametrization using water-octanol partition coefficients. J. Chem. Phys. 2017;147:094503. doi: 10.1063/1.4992111. PubMed DOI
Tang X., Zou W., Koenig P.H., McConaughy S.D., Weaver M.R., Eike D.M., Schmidt M.J., Larson R.G. Multiscale modeling of the effects of salt and perfume raw materials on the rheological properties of commercial threadlike micellar solutions. J. Phys. Chem. B. 2017;121:2468–2485. doi: 10.1021/acs.jpcb.7b00257. PubMed DOI
Pivkin I.V., Karniadakis G.E. A new method to impose no-slip boundary conditions in dissipative particle dynamics. J. Comput. Phys. 2005;207:114–128. doi: 10.1016/j.jcp.2005.01.006. DOI
Warren P.B., Vlasov A., Anton L., Masters A.J. Screening properties of gaussian electrolyte models, with application to dissipative particle dynamics. J. Chem. Phys. 2013;138:204907. doi: 10.1063/1.4807057. PubMed DOI
Gonzalez-Melchor M., Mayoral E., Velazquez M.E., Alejandre J. Electrostatic interactions in dissipative particle dynamics using the Ewald sums. J. Chem. Phys. 2006;125:224107. doi: 10.1063/1.2400223. PubMed DOI
Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995;117:1–19. doi: 10.1006/jcph.1995.1039. DOI
Dimitrov D., Milchev A., Binder K. Polymer brushes on flat and curved substrates: Scaling concepts and computer simulations. Macromol. Symp. 2007;252:47–57. doi: 10.1002/masy.200750605. DOI
Rodriguez-Ropero F., Van der Vegt N.F.A. Ionic specific effects on the structure, mechanics and interfacial softness of a polyelectrolyte brush. Faraday Discuss. 2013;160:297–309. doi: 10.1039/C2FD20072D. PubMed DOI
Weir M.P., Parnell A.J. Water soluble responsive polymer brushes. Polymers. 2011;3:2107–2132. doi: 10.3390/polym3042107. DOI
Wu T., Gong P., Szleifer I., Vlcek P., Subr V., Genzer J. Behavior of surface-anchored poly(acrylic acid) brushes with grafting density gradients on solid substrates: 1. Experiment. Macromolecules. 2007;40:8756–8764. doi: 10.1021/ma0710176. DOI