Radioactive polymeric nanoparticles for biomedical application
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
33118416
PubMed Central
PMC7599028
DOI
10.1080/10717544.2020.1837296
Knihovny.cz E-zdroje
- Klíčová slova
- Nanoparticles, medical imaging, nanoradiopharmaceuticals, polymers, radionuclides,
- MeSH
- lidé MeSH
- nádory farmakoterapie MeSH
- nanočástice chemie MeSH
- nosiče léků chemie MeSH
- polymery chemie MeSH
- radionuklidy aplikace a dávkování chemie MeSH
- systémy cílené aplikace léků metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nosiče léků MeSH
- polymery MeSH
- radionuklidy MeSH
Nowadays, emerging radiolabeled nanosystems are revolutionizing medicine in terms of diagnostics, treatment, and theranostics. These radionuclides include polymeric nanoparticles (NPs), liposomal carriers, dendrimers, magnetic iron oxide NPs, silica NPs, carbon nanotubes, and inorganic metal-based nanoformulations. Between these nano-platforms, polymeric NPs have gained attention in the biomedical field due to their excellent properties, such as their surface to mass ratio, quantum properties, biodegradability, low toxicity, and ability to absorb and carry other molecules. In addition, NPs are capable of carrying high payloads of radionuclides which can be used for diagnostic, treatment, and theranostics depending on the radioactive material linked. The radiolabeling process of nanoparticles can be performed by direct or indirect labeling process. In both cases, the most appropriate must be selected in order to keep the targeting properties as preserved as possible. In addition, radionuclide therapy has the advantage of delivering a highly concentrated absorbed dose to the targeted tissue while sparing the surrounding healthy tissues. Said another way, radioactive polymeric NPs represent a promising prospect in the treatment and diagnostics of cardiovascular diseases such as cardiac ischemia, infectious diseases such as tuberculosis, and other type of cancer cells or tumors.
Department of Fundamental Chemistry Federal University of Pernambuco Recife Brazil
Department of Radiotherapy Center Maoming People's Hospital Maoming City China
Faculty of Nuclear Sciences and Physical Engineering Prague Czech Republic
Faculty of Pharmacy Federal University of Rio de Janeiro Rio de Janeiro Brazil
Nuclear Engineering Institute Brazilian Nuclear Energy Commission Rio de Janeiro Brazil
School of Biological Sciences and Engineering Yachay Tech University Urcuquí Ecuador
Zobrazit více v PubMed
Alazraki NP, Eshima D, Eshima LA, et al. (1997). Lymphoscintigraphy, the sentinel node concept, and the intraoperative gamma probe in melanoma, breast cancer, and other potential cancers. Semin Nucl Med 27:55–67. PubMed
Alexis F. (2005). Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid. Polym Int 54:36–46.
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–15. PubMed PMC
Almutairi A, Rossin R, Shokeen M, et al. (2009). Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 106:685–90. PubMed PMC
Altai M, Membreno R, Cook B, et al. (2017). Pretargeted imaging and therapy. J Nucl Med 58:1553–9. PubMed PMC
Aweda TA, Zhang S, Mupanomunda C, et al. (2015). Investigating the pharmacokinetics and biological distribution of silver-loaded polyphosphoester-based nanoparticles using (111) Ag as a radiotracer. J Labelled Comp Radiopharm 58:234–41. PubMed PMC
Baishya R, Nayak DK, Kumar D, et al. (2016). Ursolic acid loaded PLGA nanoparticles: in vitro and in vivo Evaluation to Explore Tumor Targeting Ability on B16F10 Melanoma Cell Lines. Pharm Res 33:2691–703. PubMed
Banerjee SR, Foss CA, Horhota A, et al. (2017). 111In- and IRDye800CW-Labeled PLA–PEG nanoparticle for imaging prostate-specific membrane antigen-expressing tissues. Biomacromolecules 18:201–9. PubMed PMC
Baran ET, Özer N, Hasirci V. (2002). In vivo half life of nanoencapsulated L-asparaginase. J Mater Sci Mater Electron 13:1113–21. PubMed
Basheerudeen SAS, Kanagaraj K, Jose M, et al. (2017). Entrance surface dose and induced DNA damage in blood lymphocytes of patients exposed to low-dose and low-dose-rate X-irradiation during diagnostic and therapeutic interventional radiology procedures. Mutat. Res. Toxicol. Environ. Mutagen 818:1–6. PubMed
Bavelaar BM, Lee BQ, Gill MR, et al. (2018). Subcellular targeting of theranostic radionuclides. Front Pharmacol 9:996. PubMed PMC
Berke S, Kampmann A-L, Wuest M, et al. (2018). 18F-radiolabeling and in vivo analysis of SiFA-derivatized polymeric core-shell nanoparticles. Bioconjug Chem 29:89–95. PubMed
Bolzati C, Carta D, Salvarese N, Refosco F. (2012). Chelating systems for (99m)Tc/(188)Re in the development of radiolabeled peptide pharmaceuticals. Anticancer Agents Med Chem 12:428–61. PubMed
Bordeianu C, Parat A, Piant S, et al. (2018). Evaluation of the active targeting of melanin granules after intravenous injection of dendronized nanoparticles. Mol Pharm 15:536–47. PubMed
Carmo FSD, Ricci-Junior E, Cerqueira-Coutinho C, et al. (2017). Anti-MUC1 nano-aptamers for triple-negative breast cancer imaging by single-photon emission computed tomography in inducted animals: Initial considerations. Int J Nanomedicine 12:53–60. PubMed PMC
Cascone MG, Lazzeri L, Carmignani C, Zhu Z. (2002). Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Electron 13:523–6. PubMed
Chakravarty R, Goel S, Dash A, Cai W. (2017). Radiolabeled inorganic nanoparticles for positron emission tomography imaging of cancer: An overview. Q J Nucl Med Mol Imaging 61:181–204. PubMed PMC
Chen L, Chen J, Qiu S, et al. (2018). Biodegradable nanoagents with short biological half-life for SPECT/PAI/MRI multimodality imaging and PTT therapy of tumors. Small 14:1702700. PubMed
Cheng L, Shen S, Jiang D, et al. (2017). Chelator-free labeling of metal oxide nanostructures with zirconium-89 for positron emission tomography imaging. ACS Nano 11:12193–201. PubMed PMC
Chen X, Zeng X, Zheng Y, et al. (2019). Surface-fluorinated and pH-sensitive carboxymethyl chitosan nanoparticles to overcome biological barriers for improved drug delivery in vivo. Carbohydr Polym 208:59–69. PubMed
Costa B, Ilem-Özdemir D, Santos-Oliveira R. (2019). Technetium-99m metastable radiochemistry for pharmaceutical applications: Old chemistry for new products. J Co-Ord Chem 72:1759–84.
Criscione JM, Dobrucki LW, Zhuang ZW, et al. (2011). Development and Application of a Multimodal Contrast Agent for SPECT/CT Hybrid Imaging. Bioconjug Chem 22:1784–92. PubMed PMC
Crucho C, Barros M. (2017). Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C Mater Biol Appl 80:771–84. PubMed
Das M, Mishra D, Dhak P, et al. (2009). Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small 5:2883–93. PubMed
Das PJ, Paul P, Mukherjee B, et al. (2015). Pulmonary delivery of voriconazole loaded nanoparticles providing a prolonged drug level in lungs: a promise for treating fungal infection. Mol Pharm 12:2651–64. PubMed
De Barros ALB, Tsourkas A, Saboury B, et al. (2012). Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res 2:39. PubMed PMC
De Freitas LF, Varca GH, Batista JDS, Lugão AB. (2018). An overview of the synthesis of gold nanoparticles using radiation technologies. Nanomaterials 8:939. PubMed PMC
Delgado A, Soriano M, Sánchez E, et al. (2000). Radiolabelled biodegradable microspheres for lung imaging. Eur J Pharm Biopharm 50:227–36. PubMed
Deri MA, Ponnala S, Zeglis BM, et al. (2014). Alternative chelator for 89Zr radiopharmaceuticals: radiolabeling and evaluation of 3,4,3-(LI-1,2-HOPO). J Med Chem 57:4849–60., PubMed PMC
Dewanjee MK. (1990). The chemistry of 99mTc-labeled radiopharmaceuticals. Semin Nucl Med 20:5–27. PubMed
Di Mauro PP, Vallejo VG, Maldonado ZB, et al. (2015). Novel 18F labeling strategy for polyester-based NPs for in vivo PET-CT imaging. Bioconjug Chem 26:582–92. PubMed
Dos Santos SN, Dos Reis SRR, Pinto SR, et al. (2017). Anti-inflammatory/infection PLA nanoparticles labeled with technetium 99m for in vivo imaging. J. Nanoparticle Res 19:345.
Du JZ, Mao CQ, Yuan YY, et al. (2014. Jul-Aug). Tumor extracellular acidity-activated nanoparticles as drug delivery systems for enhanced cancer therapy. Biotechnol Adv 32:789–803. PubMed
Efthimiadou EK, Tapeinos C, Chatzipavlidis A, et al. (2014). Dynamic in vivo imaging of dual-triggered microspheres for sustained release applications: Synthesis, characterization and cytotoxicity study. Int J Pharm 461:54–63. PubMed
Elsabahy M, Wooley KL. (2012). Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41:2545–61. PubMed PMC
El-Say KM, El-Sawy H. (2017). Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm 528:675–91. PubMed
Ersahin D, Doddamane I, Cheng D. (2011). Targeted radionuclide therapy. Cancers (Basel) 3:3838–55. PubMed PMC
Eskandari N, Yavari K, Outokesh M, et al. (2013). Iodine-131 radiolabeling of poly ethylene glycol-coated gold nanorods for in vivo imaging. J Labelled Comp Radiopharm 56:12–6. PubMed
Fairclough M, Prenant C, Ellis B, et al. (2016). A new technique for the radiolabelling of mixed leukocytes with zirconium-89 for inflammation imaging with positron emission tomography. J Labelled Comp Radiopharm 59:270–6. PubMed PMC
Fard-Esfahani A, Emami-Ardekani A, Fallahi B, et al. (2014). Adverse effects of radioactive iodine-131 treatment for differentiated thyroid carcinoma. Nucl. Med. Commun 35:1. PubMed
Farrag N, El-Sabagh HA, Al-Mahallawi AM, et al. (2017). Comparative study on radiolabeling and biodistribution of core-shell silver/polymeric nanoparticles-based theranostics for tumor targeting. Int J Pharm 529:123–33. PubMed
Farzin L, Sheibani S, Moassesi ME, Shamsipur M. (2019). An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J Biomed Mater Res A 107:251–85. PubMed
Fonseca AC, Serra AC, Coelho JF. (2015). Bioabsorbable polymers in cancer therapy: Latest developments. Epma J 6:22. PubMed PMC
Franchini MC, Pucci A, Locatelli E, et al. (2012). Biocompatible nanocomposite for PET/MRI hybrid imaging. Int J Nanomedicine 7:6021–33. PubMed PMC
Ganswindt U, Schilling D, Müller AC, et al. (2011). Distribution of prostate sentinel nodes: a SPECT-derived anatomic atlas. Int J Radiat Oncol Biol Phys 79:1364–72. PubMed
Garnett MC, Kallinteri P. (2006). Nanomedicines and nanotoxicology: some physiological principles. Occup Med 56:307–11. PubMed
Ge J, Zhang Q, Zeng J, et al. (2020). Radiolabeling nanomaterials for multimodality imaging: New insights into nuclear medicine and cancer diagnosis. Biomaterials 228:119553. PubMed
Gibbens-Bandala B, Morales-Avila E, Ferro-Flores G, et al. (2019). 177Lu-Bombesin-PLGA (paclitaxel): A targeted controlled-release nanomedicine for bimodal therapy of breast cancer. Mater Sci Eng C Mater Biol Appl 105:110043. PubMed
Gill MR, Menon JU, Jarman P, et al. (2018). 111In-labelled polymeric nanoparticles incorporating a ruthenium-based radiosensitizer for EGFR-targeted combination therapy in oesophageal cancer cells† †Electronic supplementary information (ESI) available: Supplementary figures and tables. See doi:10.1039/c7nr09606b. Nanoscale 10:10596–608. PubMed PMC
Gommans GM, Gommans E, van der Zant FM, Teule GJ, et al. (2009). 99mTc Nanocoll: a radiopharmaceutical for sentinel node localisation in breast cancer-in vitro and in vivo results. Appl Radiat Isot 67:1550–8. PubMed
Gommans GM, van Dongen A, van der Schors TG, et al. (2001). Further optimisation of 99mTc-Nanocoll sentinel node localisation in carcinoma of the breast by improved labelling. Eur J Nucl Med 28:1450–5. PubMed
Grabowsk N, Hillaireau H, Vergnaud J, et al. (2015). Pharmaceutical nanotechnology Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int. J. Pharmaceutics 482:75–83. PubMed
Hajiramezanali M, Atyabi F, Mosayebnia M, et al. (2019). Beiki, D. 68Ga-radiolabeled bombesin-conjugated to trimethyl chitosan-coated superparamagnetic nanoparticles for molecular imaging: Preparation, characterization and biological evaluation. Int J Nanomedicine 14:2591–605. PubMed PMC
Hamoudeh M, Kamleh MA, Diab R, Fessi H. (2008). Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 60:1329–46. PubMed
Hamoudeh M, Salim H, Barbos D, et al. (2007). Preparation and characterization of radioactive dirhenium decacarbonyl-loaded PLLA nanoparticles for radionuclide intra-tumoral therapy. Eur J Pharm Biopharm 67:597–611. PubMed
Haume K, Rosa S, Grellet S, et al. (2016). Gold nanoparticles for cancer radiotherapy: A review. Cancer Nanotechnol 7:8. PubMed PMC
He Z, Zhang X, Huang J, et al. (2016). Immune activity and biodistribution of polypeptide K237 and folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles radiolabeled with 99mTc. Oncotarget 7:76635–46. PubMed PMC
Helal-Neto E, Pinto SR, Portilho FL, et al. (2019). Development and biological evaluation of a new nanotheranostic for tuberculosis. Drug Deliv Transl Res 9:97–105. PubMed
Hennrich U, Kopka K. (2019). Lutathera®: The First FDA- and EMA-Approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals 12:114. PubMed PMC
Hirsch JI, Tatum JL, Fratkin MJ, Apostolides , et al. (1989). Preparation and evaluation of a 99mTc-SnF2 colloid kit for leukocyte labeling. J Nucl Med 30:1257–63. PubMed
Holl G, Dorn R, Wengenmair H, et al. (2009). Validation of sentinel lymph node dissection in prostate cancer: experience in more than 2,000 patients. Eur J Nucl Med Mol Imaging 36:1377–82. Sep; PubMed
Hong H, Zhang Y, Sun J, Cai W. (2009). Molecular imaging and therapy of cancer with radiolabeled nanoparticles. Nano Today 4:399–413. PubMed PMC
Hua J, Dobrucki LW, Sadeghi MM, et al. (2005). Noninvasive imaging of angiogenesis with a 99mTc-labeled peptide targeted at alphavbeta3 integrin after murine hindlimb ischemia . Circulation 111:3255–60. PubMed
Hwang H, Kwon J, Oh P-S, et al. (2014). Peptide-loaded Nanoparticles and Radionuclide Imaging for Individualized Treatment of Myocardial Ischemia. Radiology 273:160–7. PubMed
Ista LK, Pérez-Luna VH, López GP. (1999). Surface-grafted, environmentally sensitive polymers for biofilm release. Appl Environ Microbiol 65:1603–9. PubMed PMC
Ito K, Hamamichi S, Asano M, et al. (2016). Radiolabeled liposome imaging determines an indication for liposomal anticancer agent in ovarian cancer mouse xenograft models. Cancer Sci 107:60–7. PubMed PMC
Jadvar H, Chen X, Cai W, Mahmood U. (2018). Radiotheranostics in cancer diagnosis and management. Radiology 286:388–400. PubMed PMC
Jahangirian H, Lemraski EG, Webster TJ, et al. (2017). A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. Int J Nanomedicine 12:2957–78. PubMed PMC
Jamre M, Shamsaei M, Erfani M, et al. (2018). Preparation and evaluation of 188 Re sulfide colloidal nanoparticles loaded biodegradable poly (L-lactic acid) microspheres for radioembolization therapy. J Labelled Comp Radiopharm 61:586–94. PubMed
Jensen GM, Bunch TH. (2007). Conventional liposome performance and evaluation: lessons from the development of Vescan. J Liposome Res 17:121–37. PubMed
Jensen GM, Hodgson DF. (2020). Opportunities and challenges in commercial pharmaceutical liposome applications. Adv Drug Deliv Rev PubMed
Jung K-H, Lee JH, Park JW, et al. (2015). Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo. Int J Pharm 478:251–7. PubMed
Khan I, Saeed K, Khan I. (2019). Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–31.
Kharisov B, Kharissova O, Berdonosov S. (2014). radioactive nanoparticles and their main applications: recent advances. Recent Pat Nanotechnol 8:79–96. PubMed
Kipp J. (2004). The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 284:109–22. PubMed
Kolishetti N, Alexis F, Pridgen EM, Farokhzad OC. (2011). Biodistribution and pharmacokinetics of nanoprobes. Hoboken, NJ: John Wiley and Sons, 75–104.
Körhegyi Z, Rózsa D, Hajdu I, et al. (2019). Synthesis of 68Ga-labeled biopolymer-based nanoparticle imaging agents for positron-emission tomography. Anticancer Res 39:2415–27. PubMed
Kovacs L, Tassano M, Cabrera M, et al. (2014). Labeling Polyamidoamine (PAMAM) Dendrimers with Technetium-99m via Hydrazinonicotinamide (HYNIC). Curr Radiopharm 7:115–22. PubMed
Koziorowski J, Stanciu AE, Vallejo VG, Llop J. (2017). Radiolabeled nanoparticles for cancer diagnosis and therapy. Anticancer Agents Med Chem 17:333–54. PubMed
Kunjachan S, Ehling J, Storm G, et al. (2015). Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev 115:10907–37. PubMed PMC
Lamb JR, Holland JP. (2018). Advanced methods for radiolabeling multimodality nanomedicines for SPECT/MRI and PET/MRI. J Nucl Med 59:382–9. PubMed
Lammers T, Subr V, Peschke P, et al. (2008). Image-guided and passively tumour-targeted polymeric nanomedicines for radiochemotherapy. Br J Cancer 99:900–10. PubMed PMC
Lee D-E, Na JH, Lee S, et al. (2013). Facile method to radiolabel glycol chitosan nanoparticles with (64)Cu via copper-free click chemistry for MicroPET imaging. Mol Pharm 10:2190–8. PubMed
Lewis MR, Kannan R. (2014). Development and applications of radioactive nanoparticles for imaging of biological systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:628–40. PubMed
Liang L, Zhang X, Su X, et al. (2018). Xu, H. 99m Tc-labeled oligomeric nanoparticles as potential agents for folate receptor-positive tumor targeting. J Labelled Comp Radiopharm 61:54–60. PubMed
Licia U, Martini P, Pasquali M, Boschi A. (2017). Monoclonal antibodies radiolabeling with rhenium-188 for radioimmunotherapy. Biomed Res Int 2017:5923609–7. PubMed PMC
Lim YH, Tiemann KM, Hunstad DA, et al. (2016). Polymeric nanoparticles in development for treatment of pulmonary infectious diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:842–71. PubMed PMC
Liu Y, Pressly ED, Abendschein DR, et al. (2011). Targeting Angiogenesis using a C-Type Atrial Natriuretic Factor – Conjugated Nanoprobe and PET. J Nucl Med 52:1956–63. PubMed PMC
Liu T, Shi S, Liang C, et al. (2015). Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 9:950–60. PubMed PMC
Lobaz V, Konefał R, Pánek J, et al. (2019). In situ in vivo radiolabeling of polymer-coated hydroxyapatite nanoparticles to track their biodistribution in mice. Colloids Surf B Biointerfaces 179:143–52. PubMed
Lu X-Y, Wu D, Li Z-J, Chen G-Q. (2011). Polymer nanoparticles. In: Progress in molecular biology and translational science. Amsterdan, Netherlands: Elsevier BV, 104, 299–323. PubMed
Malinge J, Géraudie B, Savel P, et al. (2017). Liposomes for PET and MR imaging and for dual targeting (Magnetic Field/Glucose Moiety): synthesis, properties, and in vivo studies. Mol Pharm 14:406–14. PubMed
Mariani G, Moresco L, Viale G, et al. (2001). Radioguided sentinel lymph node biopsy in breast cancer surgery. J Nucl Med 42:1198–215. PubMed
McDevitt MR, Chattopadhyay D, Kappel BJ, et al. (2007). Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48:1180–9. PubMed
McNelles SA, Knight SD, Janzen N, et al. (2015). Synthesis, radiolabeling, and in vivo imaging of PEGylated high-generation polyester dendrimers. Biomacromolecules 16:3033–41. PubMed
Michalet X, Pinaud F, Bentolila LA, et al. (2005). Quantum Dots For Live Cells, In Vivo Imaging, And Diagnostics. Science 307:538–44. PubMed PMC
Mikla VI, Mikla VV. (2014). Positron emission tomography. In: Medical imaging technology. Amsterdam, The Netherlands: Elsevier, 53–64.
Mir M, Ishtiaq S, Rabia S, et al. (2017). Nanotechnology: from in vivo imaging system to controlled drug delivery. Nanoscale Res Lett 12:500. PubMed PMC
Mirkovic M, Radović M, Stanković D, et al. (2019). Vranješ-Đurić, S. 99mTc-bisphosphonate-coated magnetic nanoparticles as potential theranostic nanoagent. Mater Sci Eng C Mater Biol Appl 102:124–33. PubMed
Morales-Avila E, Ferro-Flores G, E B, Ramrez FDM. (2012). Radiolabeled nanoparticles for molecular imaging. In: Molecular imaging. London: IntechOpen.
Müller RH, Maassen S, Weyhers H, Mehnert W. (1996). Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 4:161–70. PubMed
Ng QK, Olariu CI, Yaffee M, et al. (2014). Indium-111 labeled gold nanoparticles for in-vivo molecular targeting. Biomaterials 35:7050–7. PubMed
Ni D, Jiang D, Ehlerding EB, et al. (2018). Radiolabeling silica-based nanoparticles via coordination chemistry: basic principles, strategies, and applications. Acc Chem Res 51:778–88. PubMed PMC
Nuclear Medicine and Molecular Imaging Division . (2020). Johns Hopkins Radiology. Available online: https://www.hopkinsmedicine.org/radiology/specialties/nuclear-medicine/ [accessed on 8 February 2020].
Oda CMR, Fernandes R, Lopes SCDA, et al. (2017). Synthesis, characterization and radiolabeling of polymeric nano-micelles as a platform for tumor delivering. Biomed Pharmacother 89:268–75. ;. PubMed PMC
Ozgur A, Lambrecht FY, Ocakoglu K, et al. (2012). Synthesis and biological evaluation of radiolabeled photosensitizer linked bovine serum albumin nanoparticles as a tumor imaging agent. Int J Pharm 422:472–8. PubMed
Paes FM, Serafini AN. (2010). Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med 40:89–104. PubMed
Pant K, Sedláček O, Nadar RA, et al. (2017). Radiolabelled polymeric materials for imaging and treatment of cancer: Quo Vadis? Adv Healthcare Mater 6:1601115. PubMed
Pecher J, Mecking S. (2010). Nanoparticles of conjugated polymers. Chem Rev 110:6260–79. PubMed
Pillai O, Panchagnula R. (2001). Polymers in drug delivery. Curr Opin Chem Boil 5:447–51. PubMed
Piras AM, Fabiano A, Sartini S, et al. (2019). pH-Responsive carboxymethylcellulose nanoparticles for 68Ga-WBC labeling in PET imaging. Polymers 11:1615. PubMed PMC
Positron Emission Tomography (PET) . (2020). Johns Hopkins Medicine. Available online: https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/positron-emission-tomography-pet [accessed on 8 February 2020].
Presant CA, Turner AF, Proffitt RT. (1994). Potential for improvement in clinical decision-making: tumor imaging with in-111 labeled liposomes results of a phase ii-iii study. J Liposome Res 4:985–1008.
Psimadas D, Baldi G, Ravagli C, et al. (2014). Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4and Fe3O4metal cores. Nanotechnology 25:025101. PubMed
Psimadas D, Georgoulias P, Valotassiou V, Loudos G. (2012). Molecular nanomedicine towards cancer: 111In-labeled nanoparticles. J Pharm Sci 101:2271–80. PubMed
Psimadas D, Oliveira H, Thévenot J, et al. (2014). Polymeric micelles and vesicles: Biological behavior evaluation using radiolabeling techniques. Pharm Dev Technol 19:189–93. PubMed
Qi Y, Liu X, Li J, et al. (2017). Fluorine-18 labeled amino acids for tumor PET/CT imaging. Oncotarget 8:60581–8. PubMed PMC
Rangger C, Helbok A, Sosabowski J, et al. (2013). Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles. Int J Nanomedicine 8:4659–71. PubMed PMC
Rangger C, Helbok A, Von Guggenberg E, et al. (2012). Influence of PEGylation and RGD loading on the targeting properties of radiolabeled liposomal nanoparticles. Int J Nanomedicine 7:5889–900. PubMed PMC
Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. (2006). Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2:8–21. PubMed
Richter T, Nestler-Parr S, Babela R, et al. ; International Society for Pharmacoeconomics and Outcomes Research Rare Disease Special Interest Group . (2015). Rare disease terminology and definitions-a systematic global review: report of the ISPOR rare disease special interest group. Value Health 18:906–14. PubMed
Rossin R, Pan D, Qi K, et al. (2005). 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: syntesis, radiolabeling, and biologic evaluation. The Journal of Nuclear Medicine 46:1210–8. PubMed
Rybak-Smith MJ, Townley HE. (2015). Inorganic nanoparticle radiosensitizers for cancer therapies. In: Bharat Bhushan (ed), Encyclopedia of nanotechnology. The Netherlands, Dordrecht: Springer Netherlands, 1–12.
Schmidt G, Malwitz MM. (2003). Properties of polymer–nanoparticle composites. Curr Opin Colloid Interface Sci 8:103–8.
Schuster DM, Nanni C, Fanti S. (2016). PET tracers beyond FDG in prostate cancer. Semin Nucl Med 46:507–21. PubMed PMC
Seo Y, Aparici CM, Chen CP, et al. (2011). Mapping of lymphatic drainage from the prostate using filtered 99mTc-sulfur nanocolloid and SPECT/CT. J Nucl Med 52:1068–72. PubMed PMC
Seo JW, Baek H, Mahakian LM, et al. (2014). (64)Cu-labeled LyP-1-dendrimer for PET-CT imaging of atherosclerotic plaque. Bioconjug Chem 25:231–9. PubMed PMC
Seok JW, Choi YS, Chong S, et al. (2010). Sentinel lymph node identification with radiopharmaceuticals in patients with breast cancer: a comparison of 99mTc-tin colloid and 99mTc-phytate efficiency. Breast Cancer Res Treat 122:453–7. PubMed
Shaffer TM, Harmsen S, Khwaja E, et al. (2016). Stable radiolabeling of sulfur-functionalized silica nanoparticles with copper-64. Nano Lett 16:5601–4. PubMed PMC
Sharma M. (2019). Transdermal and intravenous nano drug delivery systems. In: Applications of targeted nano drugs and delivery systems. Amsterdan, Netherlands: Elsevier, 499–550.
Shi S, Xu C, Yang K, et al. (2017). Chelator-free radiolabeling of nanographene: breaking the stereotype of chelation. Angew Chem Int Ed Engl 56:2889–92. PubMed PMC
Shukla SK, Shukla SK, Govender PP, Giri NG. (2016). Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv 6:94325–51.
Simone EA, Zern BJ, Chacko A-M, et al. (2012). Endothelial targeting of polymeric nanoparticles stably labeled with the PET Imaging radioisotope iodine-124. Biomaterials 33:5406–13. PubMed PMC
Simonetti G, Palocci C, Valletta A, et al. (2019). Anti-candida biofilm activity of pterostilbene or crude extract from non-fermented grape pomace entrapped in biopolymeric nanoparticles. Molecules 24:2070. PubMed PMC
Singh R, Lillard JW. (2009). Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–23. PubMed PMC
Sirianni R, Zheng M-Q, Patel TR, et al. (2014). Radiolabeling of Poly(lactic-co-glycolic acid) (PLGA) nanoparticles with biotinylated F-18 prosthetic groups and imaging of their delivery to the brain with positron emission tomography. Bioconjug Chem 25:2157–65. PubMed PMC
Sogbein OO, Pelletier-Galarneau M, Schindler TH, et al. (2014). New SPECT and PET radiopharmaceuticals for imaging cardiovascular disease. Biomed Res Int 2014:942960–24. PubMed PMC
Srivatsan A, Chen X. (2014). Recent advances in nanoparticle-based nuclear imaging of cancers. In: Kenneth D Tew and Paul B Fisher (eds) Advances in cancer research. Cambridge, MA, USA: Academic Press Inc. 124, 83–129. PubMed
Stendahl JC, Sinusas AJ. (2015). Nanoparticles for cardiovascular imaging and therapeutic delivery, part 2: radiolabeled probes. J Nucl Med 56:1637–41. PubMed PMC
Stephens RW, Tredwell G, Knox KJ, et al. (2019). 99mTc-radiolabeled composites enabling in vivo imaging of arterial dispersal and retention of microspheres in the vascular network of rabbit lungs, liver, and liver tumors. Int J Nanomedicine 14:889–900. PubMed PMC
Studwell AJ, Kotton DN. (2011). A shift from cell cultures to creatures: in vivo imaging of small animals in experimental regenerative medicine. Mol Ther 19:1933–41. PubMed PMC
Subramanian S, Dandekar P, Jain RD, et al. (2010). Technetium-99m-labeled poly(DL-lactide-co-glycolide) nanoparticles as an alternative for sentinel lymph node imaging. Cancer Biother Radiopharm 25:637–44. PubMed
Subramanian S, Pandey U, Gugulothu D, et al. (2013). Modification of PLGA nanoparticles for improved properties as a 99m Tc-labeled agent in sentinal lymph node detection. Cancer Biother Radiopharm 28:598–606. PubMed
Sugiura G, Kühn H, Sauter M, et al. (2014). Radiolabeling strategies for tumor-targeting proteinaceous drugs. Molecules 19:2135–65. PubMed PMC
Sun N, Zhao L, Zhu J, et al. (2019). 131I-labeled polyethylenimine-entrapped gold nanoparticles for targeted tumor SPECT/CT imaging and radionuclide therapy. Int J Nanomedicine 14:4367–81. PubMed PMC
Tang L, Sun X, Liu N, et al. (2018). Radiolabeled angiogenesis-targeting croconaine nanoparticles for trimodality imaging guided photothermal therapy of glioma. ACS Appl Nano Mater 1:1741–9. PubMed PMC
Tang T, Wei Y, Yang Q, et al. (2019). Rapid chelator-free radiolabeling of quantum dots for in vivo imaging. Nanoscale 11:22248–54. PubMed
Thakor AS, Jokerst JV, Ghanouni P, et al. (2016). Clinically Approved Nanoparticle Imaging Agents. J Nucl Med 57:1833–7. PubMed PMC
Tian L, Chen Q, Yi X, et al. (2017). Radionuclide I-131 labeled albumin-paclitaxel nanoparticles for synergistic combined chemo-radioisotope therapy of cancer. Theranostics 7:614–23. Vol. Issue 10.7150/thno.17381. PubMed PMC
Ting G, Chang C-H, Wang H-E, Lee T-W. (2010). Nanotargeted radionuclides for cancer nuclear imaging and internal radiotherapy. J Biomed Biotechnol 2010:1–17. PubMed PMC
Trujillo-Nolasco RM, Morales-Avila E, Ocampo-Garcia BE, et al. (2019). Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Mater Sci Eng C Mater Biol Appl 103:109766. PubMed
Tu Y, Sun Y, Fan Y, et al. (2018). Multimodality molecular imaging of cardiovascular disease based on nanoprobes. Cell Physiol Biochem 48:1401–15. PubMed
Uhl P, Fricker G, Haberkorn U, Mier W. (2015). Radionuclides in drug development. Drug Discov Today 20:198–208. PubMed
Urakami T, Kawaguchi AT, Akai S, et al. (2009). In vivo distribution of liposome-encapsulated hemoglobin determined by positron emission tomography. Artif Organs 33:164–8. PubMed
Villanova JCO, Oréfice RL, Cunha AS. (2010). Aplicações farmacêuticas de polímeros. Polímeros 20:51–64.
Voigt N, Henrich-Noack P, Kockentiedt S, et al. (2014). Toxicity of polymeric nanoparticles in vivo and in vitro. J. Nanoparticle Res 16:2379. PubMed PMC
Waaijer SJ, Kok IC, Eisses B, et al. (2018). Molecular imaging in cancer drug development. J Nucl Med 59:726–32. PubMed
Wang Q, Sun Y, Zhang Z, Duan Y. (2015). Targeted polymeric therapeutic nanoparticles: design and interactions with hepatocellular carcinoma. Biomaterials 56:229–40. PubMed
Wang Y, Yu L, Kong X, Sun L. (2017). Application of nanodiagnostics in point-of-care tests for infectious diseases. Int J Nanomedicine 12:4789–803. PubMed PMC
Woodard PK, Liu Y, Pressly ED, et al. (2016). Design and modular construction of a polymeric nanoparticle for targeted atherosclerosis positron emission tomography imaging: a story of 25% (64)Cu-CANF-Comb. Pharm Res 33:2400–10. PubMed PMC
Xu H, Jiang S, Wang J, et al. (2020). Radioactive gold nanoparticle in two forms ((_79^198)Au GNPs and 99mTc-GNPs) for lung cancer antiproliferative induction and intralesional imaging: a proof of concept. Anticancer Agents Med Chem 20(14):1648–53. PubMed
Xuan S, de Barros AODS, Nunes RC, et al. (2020). Radioactive gold nanocluster (198-AuNCs) showed inhibitory effects on cancer cells lines. Artif Cells Nanomed Biotechnol 48:1214–21. PubMed
Yadav KS, Chuttani K, Mishra AK, Sawant KK. (2010). Long circulating nanoparticles of etoposide using PLGA-MPEG and PLGA-Pluronic block copolymers: characterization, drug-release, blood-clearance and biodistribution studies. Drug Dev Res 71:228–39.
Yasukawa T, Ogura Y, Tabata Y, et al. (2004). Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 23:253–81. PubMed
Yeong CH, Cheng M-H, Ng K-H. (2014). Therapeutic radionuclides in nuclear medicine: Current and future prospects. J Zhejiang Univ Sci B 15:845–63. PubMed PMC
Zakeri K, Narayanan D, Evans G, et al. (2019). Advancing targeted radionuclide therapy through the national cancer institute's small business innovation research pathway. J Nucl Med 60:41–9. PubMed PMC
Zhang J-J, Zhang W-C, An C-X, et al. (2019). Comparative research on 99mTc-Rituximab and 99mTc-sulfur colloid in sentinel lymph node imaging of breast cancer. BMC Cancer 19:956. PubMed PMC
Zhou Y, Li J, Xu X, et al. (2019). 64Cu-based radiopharmaceuticals in molecular imaging. Technol Cancer Res Treat 18:1–10. PubMed PMC
Zuckier LS. (2008). Principles of nuclear medicine imaging modalities. In: Principles and advanced methods in medical imaging and image analysis. Singapore: World Scientific Pub Co, 63–98.
Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology