Naturally Occurring Calanolides: Occurrence, Biosynthesis, and Pharmacological Properties Including Therapeutic Potential
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Project ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868)
The European Regional Development Fund - Project ENOCH
PubMed
33126458
PubMed Central
PMC7663239
DOI
10.3390/molecules25214983
PII: molecules25214983
Knihovny.cz E-zdroje
- Klíčová slova
- Calophyllaceae, Calophyllum, anti-HIV, calanolide A, calanolides, non-nucleoside reverse transcriptase inhibitors (NNRTIs), pseudocalanolides, reverse transcriptase,
- MeSH
- biologické přípravky chemie metabolismus farmakologie terapeutické užití MeSH
- lidé MeSH
- pyranokumariny chemie metabolismus farmakologie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické přípravky MeSH
- pyranokumariny MeSH
Calanolides are tetracyclic 4-substituted dipyranocoumarins. Calanolide A, isolated from the leaves and twigs of Calophyllum lanigerum var. austrocoriaceum (Whitmore) P. F. Stevens, is the first member of this group of compounds with anti-HIV-1 activity mediated by reverse transcriptase inhibition. Calanolides are classified pharmacologically as non-nucleoside reverse transcriptase inhibitors (NNRTI). There are at least 15 naturally occurring calanolides distributed mainly within the genus Calophyllum, but some of them are also present in the genus Clausena. Besides significant anti-HIV properties, which have been exploited towards potential development of new NNRTIs for anti-HIV therapy, calanolides have also been found to possess anticancer, antimicrobial and antiparasitic potential. This review article provides a comprehensive update on all aspects of naturally occurring calanolides, including their chemistry, natural occurrence, biosynthesis, pharmacological and toxicological aspects including mechanism of action and structure activity relationships, pharmacokinetics, therapeutic potentials and available patents.
Department of Botany Gurucharan College Silchar Assam 788004 India
Department of Life Science and Bioinformatics Assam University Silchar Assam 788011 India
School of Clinical Medicine University of Cambridge Cambridge CB2 OSP UK
Zobrazit více v PubMed
Kashman Y., Gustafson K.R., Fuler R.W., Cardellina J.H., McMahon J.B., Currens M.J., Buckheit R.W., Hughes S.H., Cragg G.M., Boyd M.R. HIV inhibitory natural products 7. The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rain forest tree, Calophyllum lanigerum. J. Med. Chem. 1992;35:2735–2743. doi: 10.1021/jm00093a004. PubMed DOI
Cragg G.M., Newman D.J. Plants as a source of anti-cancer and anti-HIV agents. Ann. Appl. Biol. 2003;143:127–133. doi: 10.1111/j.1744-7348.2003.tb00278.x. DOI
McKee T.C., Cardellina J.H., Dreyer G.B., Boyd M.R. The pseudocalanolides—Structure revision of Calanolide C. and Calanolide D. J. Nat. Prod. 1995;58:916–920. doi: 10.1021/np50120a015. PubMed DOI
Huerta-Reyes M., Basualdo M.D.C., Abe F., Jimenez-Estrada M., Soler C., Reyes-Chilpa R. HIV-1 inhibitory compounds from Calophyllum brasiliense leaves. Biol. Pharm. Bull. 2004;27:1471–1475. doi: 10.1248/bpb.27.1471. PubMed DOI
Bernabé-Antonio A., Estrada-Zúñiga M.E., Buendía-González L., Reyes-Chilpa R., Chávez-Ávila V.M., Cruz-Sosa F. Production of anti-HIV-1 calanolides in a callus culture of Calophyllum brasiliense (Cambes) Plant Cell Tissue Organ Cult. 2010;103:33–40. doi: 10.1007/s11240-010-9750-4. DOI
Gomez-Verjan J.C., Gonzalez-Sanchez I., Estrella-Parra E., Reyes-Chilpa R. Trends in the chemical and pharmacological research on the tropical trees Calophyllum brasiliense and Calophyllum inophyllum, a global context. Scientometrics. 2015;105:1019–1030. doi: 10.1007/s11192-015-1715-2. PubMed DOI PMC
Brahmachari G., Jash S.K. Naturally occurring calanolides: An update on their anti-HIV potential and total syntheses. Recent Patents Biotechnol. 2014;8:3–16. doi: 10.2174/1872208307666131218123753. PubMed DOI
Brahmachari G. Naturally occurring calanolides: Chemistry and biology. In: Brahmachari G., editor. Bioactive Natural Products: Chemistry and Biology. Wiley-VCH; Verlag, UK: 2014. pp. 349–374.
McKee T.C., Covington C.D., Fuller R.W., Bokesch H.R., Young S., Cardellina J.H., Kadushin M.R., Soejarto D.D., Stevens P.F., Cragg G.M., et al. Pyranocoumarins from Tropical Species of the Genus Calophyllum: A Chemotaxonomic Study of Extracts in the National Cancer Institute Collection1. J. Nat. Prod. 1998;61:1252–1256. doi: 10.1021/np980140a. PubMed DOI
Sunthitikawinsakul A., Kongkathip N., Kongkathip B., Phonnakhu S., Daly J.W., Spande T.F., Nimit Y., Napaswat C., Kasisit J., Yoosook C. Anti-HIV limonoid: First isolation from Clausena excavate. Phytotherap. Res. 2003;17:1101–1103. doi: 10.1002/ptr.1381. PubMed DOI
De Clercq E. Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Med. Res. Rev. 2000;20:323–349. doi: 10.1002/1098-1128(200009)20:5<323::AID-MED1>3.0.CO;2-A. PubMed DOI
Ishikawa T. Anti-HIV-1 Active Calophyllum Coumarins: Distribution, Chemistry, and Activity. Heterocycles. 2000;53:453. doi: 10.3987/REV-99-526. DOI
Ito C., Itoigawa M., Mishina Y., Filho V.C., Enjo F., Tokuda H., Nishino H., Furukawa H. Chemical Constituents of Calophyllum brasiliense 2. Structure of Three New Coumarins and Cancer Chemopreventive Activity of 4-Substituted Coumarins. J. Nat. Prod. 2003;66:368–371. doi: 10.1021/np0203640. PubMed DOI
Silva L.G., Gomes K.S., Costa-Silva T.A., Romanelli M.M., Tempone A.G., Sartorelli P., Lago J.H.G. Calanolides E1 and E2, two related coumarins from Calophyllum brasiliense Cambess. (Clusiaceae), displayed in vitro activity against amastigote forms of Trypanosoma cruzi and Leishmania infantum. Nat. Prod. Res. 2020:1–5. doi: 10.1080/14786419.2020.1765347. PubMed DOI
Tee K.H., Ee G.C.L., Ismail I.S., Karunakaran T., Teh S.S., Jong V.Y.M., Nor S.M.M. A new coumarin from stem bark of Calophyllum wallichianum. Nat. Prod. Res. 2018;32:2565–2570. doi: 10.1080/14786419.2018.1428588. PubMed DOI
Singh I.P., Bharate S.B., Bhutani K.K. Anti-HIV natural products. Curr. Sci. 2005;89:269–290.
Gómez-Cansino R., Espitia-Pinzón C.I., Campos-Lara M.G., Guzmán-Gutiérrez S.L., Segura-Salinas E., Echeverría-Valencia G., Torras-Claveria L., Cuevas-Figueroa X.M., Reyes-Chilpa R. Antimycobacterial and HIV-1 Reverse Transcriptase Activity of Julianaceae and Clusiaceae Plant Species from Mexico. Evidence-Based Complement. Altern. Med. 2015;2015:1–8. doi: 10.1155/2015/183036. PubMed DOI PMC
Garcia-Zebadua J.C., Reyes-Chilpa R., Huerta-Reyes M., Castillo-Arellano J.I., Santillan-Hernandez S., Vazaquez-Astudillo B., Mendoza-Espinoza J.A. The tropical tree Calophyllum brasiliense: A botanical, chemical and pharmacological review. Vita Rev. Facul. Quimica Farmaceut. 2014;21:126–145.
Gustafson K.R., Bokesch H.R., Fuller R.W., Cardellina J.H., Kadushin M.R., Soejarto D.D., Boyd M.R. Calanone, a novel coumarin from Calophyllum teysmannii. Tetrahedron Lett. 1994;35:5821–5824. doi: 10.1016/S0040-4039(00)78193-7. DOI
McKee T.C., Fuller R.W., Covington C.D., Cardellina J.H., Gulakowski R.J., Krepps B.L., McMahon J.B., Boyd M.R. New Pyranocoumarins Isolated from Calophyllum lanigerum and Calophyllum teysmannii 1. J. Nat. Prod. 1996;59:754–758. doi: 10.1021/np9603784. PubMed DOI
Zou J., Jin D., Chen W., Wang J., Liu Q., Zhu X., Zhao W. Selective Cyclooxygenase-2 Inhibitors from Calophyllum membranaceum. J. Nat. Prod. 2005;68:1514–1518. doi: 10.1021/np0502342. PubMed DOI
Ma C.-H., Chen B., Qi H.-Y., Li B.-G., Zhang G.-L. Two Pyranocoumarins from the Seeds of Calophyllum polyanthum. J. Nat. Prod. 2004;67:1598–1600. doi: 10.1021/np0499158. PubMed DOI
Chen J.-J., Xu M., Luo S.-D., Wang H.-Y., Xu J.-C. Chemical constituents of Calophyllum polyanthum. Acta Botan. Yunnanica. 2001;23:521–526.
Spino C., Dodier M., Sotheeswaran S. Anti-HIV coumarins from calophyllum seed oil. Bioorganic Med. Chem. Lett. 1998;8:3475–3478. doi: 10.1016/S0960-894X(98)00628-3. PubMed DOI
Yang S.S., Cragg G.M., Newman A.D.J., Bader J.P. Natural Product-Based Anti-HIV Drug Discovery and Development Facilitated by the NCI Developmental Therapeutics Program. J. Nat. Prod. 2001;64:265–277. doi: 10.1021/np0003995. PubMed DOI
Buckheit R.W., White E.L., Fliakas-Boltz V., Russell J., Stup T.L., Kinjerski T.L., Osterling M.C., Weigand A., Bader J.P. Unique Anti-Human Immunodeficiency Virus Activities of the Nonnucleoside Reverse Transcriptase Inhibitors Calanolide A, Costatolide, and Dihydrocostatolide. Antimicrob. Agents Chemother. 1999;43:1827–1834. doi: 10.1128/AAC.43.8.1827. PubMed DOI PMC
Nahar L., Sarker S.D. Chemistry for Pharmacy Students: General, Organic and Natural Product Chemistry. 2nd ed. Wiley and Sons; Chichester, UK: 2019.
Gómez-Robledo H.-B., Cruz-Sosa F., Bernabé-Antonio A., Guerrero-Analco A., Olivares J.L., Alonso-Sanchez A., Villafán E., Ibarra-Laclette E. Identification of candidate genes related to calanolide biosynthesis by transcriptome sequencing of Calophyllum brasiliense (Calophyllaceae) BMC Plant Biol. 2016;16:177. doi: 10.1186/s12870-016-0862-9. PubMed DOI PMC
Castillo-Arellano J.I., Osuna-Fernández H.R., Mumbru-Massip M., Gómez-Cancino R., Reyes-Chilpa R. The biosynthesis of pharmacologically active compounds in Calophyllum brasiliense seedlings is influenced by calcium and potassium under hydroponic conditions. Bot. Sci. 2019;97:89–99. doi: 10.17129/botsci.2018. DOI
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Crag G.M., Newman D.J. Natural products drug discovery in the next millennium. Pharm. Biol. 2001;39:8–17. PubMed
Wilson E.O. What is nature worth? Wilson Quarter. 2002;26:36–37.
Jaikumar K., Sheikh N.M.M., Anand D., Saravanan P. Anticancer activity of Calophyllum inophyllum L. ethanolic leaf extract in MCF human breast cell lines. Int. J. Pharm. Sci. Res. 2016;7:3330–3335.
Ito C., Murata T., Itoigawa M., Nakao K., Kaneda N., Furukawa H. Apoptosis inducing activity of 4-substituted coumarins from Calophyllum brasiliense in human leukaemia HL-60 cells. J. Pharm. Pharmacol. 2006;58:975–980. doi: 10.1211/jpp.58.7.0013. PubMed DOI
Omer A., Singh P. An integrated approach of network-based systems biology, molecular docking, and molecular dynamics approach to unravel the role of existing antiviral molecules against AIDS-associated cancer. J. Biomol. Struct. Dyn. 2016;35:1547–1558. doi: 10.1080/07391102.2016.1188417. PubMed DOI
Hanna L. Calanolide A: A natural non-nucleoside reverse transcriptase inhibitor. BETA Bull. Exp. Treat. AIDS Publ. San Francisco AIDS Found. 1999;12:8–9. PubMed
Xu Z.-Q., Norris K.J., Weinberg D.S., Kardatzke J., Wertz P., Frank P., Flavin M.T. Quantification of (+)-calanolide A, a novel and naturally occurring anti-HIV agent, by high-performance liquid chromatography in plasma from rat, dog and human. J. Chromatogr. B Biomed. Sci. Appl. 2000;742:267–275. doi: 10.1016/S0378-4347(00)00170-5. PubMed DOI
Boyer P.L., Currens M.J., McMahon J.B., Boyd M.R., Hughes S.H. Analysis of nonnucleoside drug-resistant variants of human immunodeficiency virus type 1 reverse transcriptase. J. Virol. 1993;67:2412–2420. doi: 10.1128/JVI.67.4.2412-2420.1993. PubMed DOI PMC
Hizi A., Tal R., Shaharabany M., Currens M.J., Boyd M.R., Hughes S.H., McMahon J.B. Specific inhibition of the reverse transcriptase of human immunodeficiency virus type 1 and the chimeric enzymes of human immunodeficiency virus type 1 and type 2 by nonnucleoside inhibitors. Antimicrob. Agents Chemother. 1993;37:1037–1042. doi: 10.1128/AAC.37.5.1037. PubMed DOI PMC
Buckheit R.W., Fliakasboltz V., Yeagybargo S., Weislow O., Mayers D.L., Boyer P.L., Hughes S.H., Pan B.C., Chu S.H., Bader J.P. Resistance to 1-[(2-hydroxyethoxy)methyl]-6-(phenylthiol)thymine derivatives is generated by mutations ad multiple sites in the HIV-1 reverse-transcriptase. Virology. 1995;210:186–193. doi: 10.1006/viro.1995.1330. PubMed DOI
Quan Y., Motakis D., Buckheit R., Xu Z.-Q., Flavin M.T., Parniak M.A., Wainberg M.A. Sensitivity and resistance to (+)-calanolide A of wild-type and mutated forms of HIV-1 reverse transcriptase. Antivir. Ther. 1999;4:203–209. PubMed
Xu Z.-Q., Hollingshead M.G., Borgel S., Elder C., Khilevich A., Flavin M.T. In vivo anti-HIV activity of (+)-calanolide a in the hollow fiber mouse model. Bioorganic Med. Chem. Lett. 1999;9:133–138. doi: 10.1016/S0960-894X(98)00713-6. PubMed DOI
Xu Z.-Q., Flavin M.T., Jenta T.R. Calanolides, the naturally occurring anti-HIV agents. Curr. Opin. Drug Discov. Dev. 2000;3:155–166. PubMed
Buckheit R.W., Kinjerski T.L., Fliakasboltz V., Russell J.D., Stup T.L., Pallansch L.A., Brouwer W.G., Dao D.C., Harrison W.A., Schultz R.J., et al. Structure-activity and cross resistance evaluations of a series of human-deficiency-virus type-1 specific compounds related to oxanthin carboxanilide. Antimicrob. Agents Chemotherap. 1995;39:2718–2727. doi: 10.1128/AAC.39.12.2718. PubMed DOI PMC
Buckheit R., Fliakas-Boltz V., Russell J., Snow M., Pallansch L., Yang S., Bader J., Khan T., Zanger M. A Diarylsulphone Non-Nucleoside Reverse Transcriptase Inhibitor with a Unique Sensitivity Profile to Drug-Resistant Virus Isolates. Antivir. Chem. Chemother. 1996;7:243–252. doi: 10.1177/095632029600700504. DOI
Buckheit J.R.W., Russell J.D., Xu Z.-Q., Flavin M. Anti-HIV-1 Activity of Calanolides Used in Combination with other Mechanistically Diverse Inhibitors of HIV-1 Replication. Antivir. Chem. Chemother. 2000;11:321–327. doi: 10.1177/095632020001100502. PubMed DOI
Budihas S.R., Gorshkova I., Gaidmakov S., Wamiru A., Bona M.K., Parniak M.A., Crouch R.J., McMahon J.B., Beutler J.A., le Grice S.F.J., et al. Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones. Nucleic Acid Res. 2005;33:1249–1256. doi: 10.1093/nar/gki268. PubMed DOI PMC
Xu Z.Q., Buckheit R.W., Stup T.L., Flavin M.T., Khilevich A., Rizzo J.D., Lin L., Zembower D.E. In vitro anti-human deficiency virus (HIV) activity of the chromanone derivative, 12-oxocalanolide A, a novel NNRTI. Bioorg. Med. Chem. Lett. 1998;8:2179–2184. PubMed
Sorbera L.A., Leeson P., Castaner J. Calanolide A: Antiviral for AIDS, reverse transcriptase inhibitor. Drugs Future. 1999;24:235–245. doi: 10.1358/dof.1999.024.03.474035. DOI
Auwerx J., Rodríguez-Barrios F., Ceccherini-Silberstein F., San-Félix A., Velázquez S., de Clercq E., Camarasa M.-J., Perno C.F., Gago F., Balzarini J. The Role of Thr139 in the Human Immunodeficiency Virus Type 1 Reverse Transcriptase Sensitivity to (+)-Calanolide A. Mol. Pharmacol. 2005;68:652–659. doi: 10.1124/mol.105.012351. PubMed DOI
Reyes-Chilpa R., Huerta-Reyes M. Natural compounds from plants of the Clausiaceae family: Type 1 human immunodeficiency virus inhibitors. Interciencia. 2009;34:385–392.
Cardellina J.H., Bokesch H.R., McKee T.C., Boyd M.R. Resolution and comparative anti-HIV evaluation of the enantiomers of calanolides A and B. Bioorganic Med. Chem. Lett. 1995;5:1011–1014. doi: 10.1016/0960-894X(95)00158-P. DOI
Galinis D.L., Fuller R.W., McKee T.C., Cardellina J.H., Gulakowski R.J., McMahon J.B., Boyd M.R. Structure–Activity Modifications of the HIV-1 Inhibitors (+)-Calanolide A and (−)-Calanolide B1. J. Med. Chem. 1996;39:4507–4510. doi: 10.1021/jm9602827. PubMed DOI
Ishikawa T. Chemistry of Anti HIV-1 Active Calophyllum Coumarins. J. Synth. Org. Chem. Jpn. 1998;56:116–124. doi: 10.5059/yukigoseikyokaishi.56.116. DOI
Yu D., Suzuki M., Xie L., Morris-Natschke S.L., Lee K.-H. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med. Res. Rev. 2003;23:322–345. doi: 10.1002/med.10034. PubMed DOI
Qiu K.X., Xie H.D., Guo Y.P., Huang Y., Liu B., Li W. QSAR studies on the calanolide analogues as anti-HIV-1 agents. Chin. J. Struct. Chem. 2010;29:1477–1482.
Peng Z.-G., Chen H.-S., Wang L., Liu G. Anti-HIV activities of HIV-1 reverse transcriptase inhibitor racemic 11-demethyl-calanolide A. Acta Pharm. Sin. 2008;43:456–460. PubMed
Sarker S.D., Nahar L. An Introduction to Computational Phytochemistry. Comput. Phytochem. 2018;1146:1–41.
Patel R.D., Kumar S.P., Patel C.N., Shankar S.S., Pandya H.A., Solanki H. Parallel screening of drug-like natural compounds using Caco-2 cell permeability QSAR model with applicability domain, lipophilic ligand efficiency index and shape property: A case study of HIV-1 reverse transcriptase inhibitors. J. Mol. Struct. 2017;1146:80–95. doi: 10.1016/j.molstruc.2017.05.019. DOI
Currens M.J., Gulakowski R.J., Mariner J.M., Moran R.A., Buckheit R.W., Gustafson K.R., McMahon J.B., Boyd M.R. Antiviral activity and mechanism of action of calanolide A against the human deficiency virus type-1. J. Pharmacol. Experim. Therapeut. 1996;279:645–651. PubMed
Ha M.H., Nguyen V.T., Nguyen K.Q.C., Cheah E.L.C., Heng P.W.S. Antimicrobial activity of Calophyllum inophyllum crude extracts obtained by pressurised liquid extraction. Asian J. Trad. Med. 2009;4:141–146.
Alkhamaiseh S.I., Taher M., Ahmad F. The Phytochemical Contents and Antimicrobial Activities of Malaysian Calophyllum rubiginosum. Am. J. Appl. Sci. 2011;8:201–205. doi: 10.3844/ajassp.2011.201.205. PubMed DOI
Saravanan R., Dhachinamoorthi D., Senthikumar K., Thamizhvanan K. Antimicrobial activity of various extracts from various parts of Calophyllum inophyllum L. J. Appl. Pharm. Sci. 2011;1:102–106.
Adewuyi A., Fasusi O.H., Oderinde R.A. Antibacterial activities of acetonides prepared from the seed oils of Calophyllum inophyllum and Pterocarpus osun. J. Acute Med. 2014;4:75–80. doi: 10.1016/j.jacme.2014.02.001. DOI
Léguillier T., Lecsö-Bornet M., Lemus C., Rousseau-Ralliard D., Lebouvier N., Hnawia E., Nour M., Aalbersberg W., Ghazi K., Raharivelomanana P., et al. The Wound Healing and Antibacterial Activity of Five Ethnomedical Calophyllum inophyllum Oils: An Alternative Therapeutic Strategy to Treat Infected Wounds. PLoS ONE. 2015;10:e0138602. doi: 10.1371/journal.pone.0138602. PubMed DOI PMC
Kudera T., Rondevaldova J., Kant R., Umar M., Skřivanová E., Kokoska L. In vitro growth-inhibitory activity of Calophyllum inophyllum ethanol leaf extract against diarrhoea-causing bacteria. Trop. J. Pharm. Res. 2017;16:2207. doi: 10.4314/tjpr.v16i9.23. DOI
Oo W.M. Pharmacological properties of Calophyllum inophyllum—Updated review. Int. J. Photochem. Photobiol. 2018;2:28–32.
Xu Z.Q., Barrow W.W., Suling W.J., Westbrook L., Barrow E., Lin Y.M., Flavin M.T. Anti-HIV natural product (+)-calanolide A is active against both drug-susceptible and drug-resistant strains of Mycobacterium tuberculosis. Bioorg. Med. Chem. 2004;12:1199–1207. doi: 10.1016/j.bmc.2003.11.012. PubMed DOI
Bueno J., Coy E.D., Stashenko E. Antimycobacterial natural products—An opportunity for the Colombian biodiversity. Rev. Espanola Quimiot. 2011;24:175–183. PubMed
Xu Z.-Q., Lin Y.M., Flavin M.T. Method for Treating and Preventing Mycobacterium infections. 6,268,393. U.S. Patent. 2001 Jul 31;
Souto E.B., Dias-Ferreira J., Craveiro S.A., Severino P., Sanchez-Lopez E., Garcia M.L., Silva A.M., Souto S.B., Mahant S. Therapeutic Interventions for Countering Leishmaniasis and Chagas’s Disease: From Traditional Sources to Nanotechnological Systems. Pathogens. 2019;8:119. doi: 10.3390/pathogens8030119. PubMed DOI PMC
Ismail F.M.D., Nahar L., Zhang K., Sarker S.D. Antimalarial and antiparasitic natural products. In: Sarker S.D., Nahar L., editors. Medicinal Natural Products—A Disease-Focused Approach. Elsevier; London, UK: 2020. pp. 115–151.
Creagh T., Ruckle J.L., Tolbert D.T., Giltner J., Eiznhamer D.A., Dutta B., Flavin M.T., Xu Z.-Q. Safety and Pharmacokinetics of Single Doses of (+)-Calanolide A, a Novel, Naturally Occurring Nonnucleoside Reverse Transcriptase Inhibitor, in Healthy, Human Immunodeficiency Virus-Negative Human Subjects. Antimicrob. Agents Chemother. 2001;45:1379–1386. doi: 10.1128/AAC.45.5.1379-1386.2001. PubMed DOI PMC
César G.-Z.J., Gil-Alfonso M.-G., Marius M.-M., Elizabeth E.-M., Ángel C.-B.M., Maira H.-R., Guadalupe C.-L.M., Manuel J.-E., Ricardo R.-C. Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico. Fitoterapia. 2011;82:1027–1034. doi: 10.1016/j.fitote.2011.06.006. PubMed DOI
Eiznhamer D.A., Creagh T., Ruckle J.L., Tolbert D.T., Giltner J., Dutta B., Flavin M.T., Jenta T., Xu Z.-Q. Safety and Pharmacokinetic Profile of Multiple Escalating Doses of (+)-Calanolide A, a Naturally Occurring Nonnucleoside Reverse Transcriptase Inhibitor, in Healthy HIV-Negative Volunteers. HIV Clin. Trials. 2002;3:435–450. doi: 10.1310/9gde-f2r1-w2rl-e9fj. PubMed DOI
Newman R.A., Chen W., Madden T.L. Pharmaceutical Properties of Related Calanolide Compounds with Activity against Human Immunodeficiency Virus. J. Pharm. Sci. 1998;87:1077–1080. doi: 10.1021/js980122d. PubMed DOI
Usach I., Melis V., Peris J.E. Non-nucleoside reverse transcriptase inhibitors: A review on pharmacokinetics, pharmacodynamics, safety and tolerability. J. Int. AIDS Soc. 2013;16:1–14. doi: 10.7448/IAS.16.1.18567. PubMed DOI PMC
Singh I.P., Bodiwala H.S. Recent advances in anti-HIV natural products. Nat. Prod. Rep. 2010;27:1781–1800. doi: 10.1039/c0np00025f. PubMed DOI
Buckheit R.W. Non-nucleoside reverse transcriptase inhibitors: Perspectives on novel therapeutic compounds and strategies for the treatment of HIV infection. Expert Opin. Investig. Drugs. 2001;10:1423–1442. doi: 10.1517/13543784.10.8.1423. PubMed DOI
ClinicalTrials.gov. The Safety and Effectiveness of (+)-Calanolide A in HIV-Infected Patients Who Have Never Taken Anti-HIV Drugs. NIH US National Library of Medicine. [(accessed on 21 August 2020)];2005 Available online: https://clinicaltrials.gov/ct2/show/NCT00005120.
Zhang L.L., Xue H., Li L., Lu X.F., Chen Z.W., Liu G. HPLC enantioseparation, absolute configuration determination and anti-HIV activity of (+/-)-F19 enantiomers. Yaoxue Xuebao. 2015;50:733–737. PubMed
Wu X., Zhang Q., Guo J., Jia Y., Zhang Z., Zhao M., Yang Y., Wang B., Hu J., Sheng L., et al. Metabolism of F18, a Derivative of Calanolide A, in Human Liver Microsomes and Cytosol. Front. Pharmacol. 2017;8:479. doi: 10.3389/fphar.2017.00479. PubMed DOI PMC
Xue H., Lu X., Zheng P., Liu L., Han C., Hu J., Liu Z., Ma T., Li Y., Wang L., et al. Highly Suppressing Wild-Type HIV-1 and Y181C Mutant HIV-1 Strains by 10-Chloromethyl-11-demethyl-12-oxo-calanolide A with Druggable Profile. J. Med. Chem. 2010;53:1397–1401. doi: 10.1021/jm901653e. PubMed DOI
Boyd M.R., Cardellina J.H., II, Gustafson K.R., McMahon J.B., Fuller R.W., Cragg G.M., Kashman Y., Soejarto D. Calanolide and related antiviral compounds, compositions, and uses thereof. 5,859,049. U.S. Patent. 1999 Jan 12;
Uckun F.M., Sudbeck E. Calanolides for Inhibiting BTK. Official Gazette of the United States Patents and Trademark Office Patents. 6,306,897. U.S. Patent. 2001 Oct 23;
Aalipour A., Advani R.H. Bruton’s tyrosine kinase inhibitors and their clinical potential in the treatment of B-cell malignancies: Focus on ibrutinib. Ther. Adv. Hematol. 2014;5:121–133. doi: 10.1177/2040620714539906. PubMed DOI PMC