MongoDB Database as Storage for GPON Frames
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu dopisy
Grantová podpora
VI20192022135
Ministerstvo Vnitra České Republiky
PubMed
33143350
PubMed Central
PMC7663392
DOI
10.3390/s20216208
PII: s20216208
Knihovny.cz E-zdroje
This work is focused on creating an open-source software-based solution for monitoring traffic transmitted through gigabit passive optical network. In this case, the data are captured by the field-programmable gate array (FPGA) card and reassembled using parsing software from a passive optical network built on the International Telecommunication Unit telecommunication section (ITU-T) G.984 gigabit-capable passive optical network GPON recommendation. Then, the captured frames are converted by suitable software into GPON frames, which will be further processed for analysis. Due to the high transfer rate of GPON recommendations, the work describes the issue of writing to the Mongo database system. In order to achieve the best possible results and minimal loss of transmitted frames, a series of tests were performed. The proposed test scenarios are based on different database writing approaches and are implemented in the Python and C# programming languages. Based on our results, it has been shown that the high processing speed is too high for Python processing. Critical operations must be implemented in the C# programming language. Due to rapid application development, Python can only be used for noncritical time-consuming data processing operations.
Sensors (Basel). 20:6208. PubMed
Zobrazit více v PubMed
Singh J., Garg A.K. Optimal solutions of integrated optical and wireless applications using GPON-RoF technologies; Proceedings of the 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA); Coimbatore, India. 12–14 June 2019; pp. 526–531.
Hood D., Trojer E. Gigabit-Capable Passive Optical Networks. Wiley; Hoboken, NJ, USA: 2011.
International Telecommunication Union . G.984.3 Gigabit-Capable Passive Optical Networks (G-PON): Transmission Convergence Layer Specification. 1st ed. International Telecommunication Union; Geneva, Switzerland: 2014.
Hantoro G.D., Wibisono G. GPON performance analysis for 5G backhaul solutions; Proceedings of the 2018 IEEE Region 10 Conference; Jeju Island, Korea. 28–31 October 2018; pp. 1544–1547.
Zin A.M., Idrus S.M., Ismail N.A., Ramli A., Butt R.A. Energy efficient performance evaluation of XG-PON for sustainable green communication infrastructure; Proceedings of the 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama); Toyama, Japan. 1–4 August 2018; pp. 950–955.
International Telecommunication Union . G.984.2 Gigabit-Capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) Layer Specification. 1st ed. International Telecommunication Union; Geneva, Switzerland: 2003.
International Telecommunication Union . G.987.1: 10-Gigabit-Capable Passive Optical Networks (XG-PON): General Requirements. 1st ed. International Telecommunication Union; Geneva, Switzerland: 2016.
Cale I., Salihovic A., Ivekovic M. Gigabit passive optical network—GPON; Proceedings of the 2007 29th International Conference on Information Technology Interfaces; Cavtat, Croatia. 25–28 June 2007; pp. 679–684.
International Telecommunication Union . G.984.1: Gigabit-Capable Passive Optical Networks (GPON): General Characteristics. 1st ed. International Telecommunication Union; Geneva, Switzerland: 2008.
Menoutis G., Foteas A., Liakopoulos N., Georgis G., Reisis D., Synnefakis G. A configurable transmitter architecture organization for XG-PON OLT/ONU/ONT network elements; Proceedings of the 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS); Cairo, Egypt. 6–9 December 2015; pp. 673–676.
Pachnicke S., Eiselt M.H., Grobe K., Elbers J. The frontiers of optical access networks; Proceedings of the 2015 International Conference on Optical Network Design and Modeling (ONDM); Pisa, Italy. 11–14 May 2015; pp. 12–15.
Mikaeil A., Hu W., Hussain S., Sultan A. Traffic-Estimation-Based Low-Latency XGS-PON Mobile Front-Haul for Small-Cell C-RAN Based on an Adaptive Learning Neural Network. Appl. Sci. 2018;8:1097. doi: 10.3390/app8071097. DOI
Mercian A., McGarry M.P., Reisslein M. Impact of report message scheduling (RMS) in 1G/10G EPON and GPON. Opt. Switch. Netw. 2014;12:1–13. doi: 10.1016/j.osn.2013.11.004. DOI
Sales V., Segarra J., Prat J. An efficient dynamic bandwidth allocation for GPON long-reach extension systems. Opt. Switch. Netw. 2014;14:69–77. doi: 10.1016/j.osn.2014.01.009. DOI
Wang Y., Zhu Z., Wang L., Bai J. A novel proposal of GPON-oriented fiber grating sensing data digitalization system for remote sensing network. Opt. Commun. 2016;366:1–7. doi: 10.1016/j.optcom.2015.12.029. DOI
Das S., Ruffini M. A Variable Rate Fronthaul Scheme for Cloud Radio Access Networks. J. Light. Technol. 2019;37:3153–3165. doi: 10.1109/JLT.2019.2912127. DOI
Talli G., Slyne F., Porto S., Carey D., Brandonisio N., Naughton A., Ossieur P., McGettrick S., Blumm C., Ruffini M., et al. SDN Enabled Dynamically Reconfigurable High Capacity Optical Access Architecture for Converged Services. J. Light. Technol. 2017;35:550–560. doi: 10.1109/JLT.2016.2604864. DOI
Kosmatos E., Uzunidis D., Matrakidis C., Stavdas A., Horlitz S., Pfeiffer T., Lord A. Building a Truly Dynamic Filterless Metro Network by Reusing a Commercial PON’s Data-Plane and a Novel SDN-Enabled Control-Plane. J. Light. Technol. 2019;37:6033–6039. doi: 10.1109/JLT.2019.2945410. DOI
Yeh C.H., Chow C.W., Yang M.H., Hsu D.Z. A Flexible and Reliable 40-Gb/s OFDM Downstream TWDM-PON Architecture. IEEE Photonics J. 2015;7:1–9. doi: 10.1109/JPHOT.2015.2504970. DOI
Pakpahan A.F., Hwang I.S., Nikoukar A. OLT Energy Savings via Software-Defined Dynamic Resource Provisioning in TWDM-PONs. J. Opt. Commun. Netw. 2017;9:1019–1029. doi: 10.1364/JOCN.9.001019. DOI
McGettrick S., Slyne F., Kitsuwan N., Payne D.B., Ruffini M. Experimental End-to-End Demonstration of Shared N. J. Light. Technol. 2016;34:4205–4213. doi: 10.1109/JLT.2016.2593661. DOI
Yin S., Shen T.S., Bi Y., Jin J., Oyama T., Kazovsky L.G. A Novel Quasi-Passive, Software-Defined, and Energy Efficient Optical Access Network for Adaptive Intra-PON Flow Transmission. J. Light. Technol. 2015;33:4536–4546. doi: 10.1109/JLT.2015.2477036. DOI
Quadri C., Premoli M., Ceselli A., Gaito S., Rossi G.P. Optimal Assignment Plan in Sliced Backhaul Networks. IEEE Access. 2020;8:68983–69002. doi: 10.1109/ACCESS.2020.2986535. DOI
Mustak M.S., Hossen M., Saha S. Weight-based bandwidth allocation algorithm for improving the QoSs of Multi-OLT PON in downstream direction; Proceedings of the 5th International Conference on Advances in Electrical Engineering (ICAEE); Dhaka, Bangladesh. 26–28 September 2019; pp. 663–667.
Hossen M., Hanawa M. Dynamic Bandwidth Allocation Algorithm With Proper Guard Time Management Over Multi-OLT PON-Based Hybrid FTTH and Wireless Sensor Networks. J. Opt. Commun. Netw. 2013;5:802–812. doi: 10.1364/JOCN.5.000802. DOI
Liu Z., Gan C., Xie W., Yan Y., Qiao H. Algorithm of both release and allocation bandwidth for downstream channel in multi-OLT PON. IET Commun. 2018;12:824–831. doi: 10.1049/iet-com.2017.0876. DOI
Peng Z., Radcliffe P. Modeling and simulation of Ethernet Passive Optical Network (EPON) experiment platform based on OPNET Modeler; Proceedings of the IEEE 3rd International Conference on Communication Software and Networks; Xi’an, China. 27–29 May 2011; pp. 99–104. DOI
Wu X., Brown K., Sreenan C., Alvarez P., Ruffini M., Marchetti N., Payne D., Doyle L. An XG-PON module for the NS-3 network simulator; Proceedings of the Sixth International Conference on Simulation Tools and Techniques; Cannes, France. 5–7 March 2013; pp. 195–202. DOI
Nakayama Y., Yasunaga R. ITU TWDM-PON module for ns-3. Wirel. Netw. 2020;1:1–12. doi: 10.1007/s11276-019-02236-8. DOI
Horvath T., Munster P., Jurcik M., Koci L., Filka M. Timing measurement and simulation of activation process in GPON networks. Opt. Appl. 2015;45:1–14. doi: 10.5277/oa150403. DOI
Horvath T., Krkos R., Dubravec L. Deep data analysis in gigabit passive optical networks. Opt. Appl. 2017;47:157–170. doi: 10.5277/oa170114. DOI
Meng L., Peng H., Zeng J. Hardware Platform System of GPON ONU System Designed Based on FPGA. CN101365250A. [(accessed on 14 October 2020)];2010 Dec 8; Available online: https://patents.google.com/patent/CN101365250A/en.
Doo K.-H., Lee S.-S., Kim W.-W. Design of a retimed long-reach GPON Extender using FPGA; Proceedings of the Digest of the 9th International Conference on Optical Internet (COIN 2010); Jeju, Korea. 11–14 July 2010; pp. 1–3.
Vinh T.Q., Park J.-H., Kim Y.-C., Kim K.-O. An FPGA implementation of 30Gbps security module for GPON systems; Proceedings of the 8th IEEE International Conference on Computer and Information Technology; Sydney, Australia. 8–11 July 2008; pp. 868–872.
Straullu S., Savio P., Nespola A., Chang J., Ferrero V., Gaudino R., Abrate S. Demonstration of upstream WDM+FDMA PON and real time implementation on an FPGA platform; Proceedings of the 2015 European Conference on Optical Communication (ECOC); Valencia, Spain. 27 September–1 October 2015; pp. 1–3.
Oujezsky V., Horvath T., Jurcik M., Skorpil V., Holik M., Kvas M. Fpga network card and system for gpon frames analysis at optical layer; Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP); Budapest, Hungary. 1–3 July 2019; pp. 19–23.
DFC Design lCecilie—xPON Module. [(accessed on 14 October 2020)]; Available online: https://www.dfcdesign.cz/en/cecilie-xpon-module.
Jurcik M., Horvath T., Oujezsky V., Skorpil V., Holik M. GPON parser for database analysis; Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP); Budapest, Hungary. 1–3 July 2019; pp. 347–350. DOI
Horvath T., Jurcik M., Oujezsky V., Skorpil V. GPON analyzer—Frame parser module; Proceedings of the 2019 42nd International Conference on Telecommunications and Signal Processing (TSP); Budapest, Hungary. 1–3 July 2019; pp. 748–752. DOI
Holik M., Horvath T., Oujezsky V. Application for GPON Frame Analysis. Electronics. 2019;8:700. doi: 10.3390/electronics8060700. DOI