Recycling biofloc waste as novel protein source for crayfish with special reference to crayfish nutritional standards and growth trajectory
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33177672
PubMed Central
PMC7658255
DOI
10.1038/s41598-020-76692-0
PII: 10.1038/s41598-020-76692-0
Knihovny.cz E-resources
- MeSH
- Cichlids MeSH
- Stress, Physiological MeSH
- Animal Nutritional Physiological Phenomena MeSH
- Hepatopancreas chemistry MeSH
- Animal Feed * MeSH
- Waste Products MeSH
- Proteins chemistry pharmacology MeSH
- Recycling * MeSH
- Astacoidea chemistry growth & development physiology MeSH
- Fresh Water MeSH
- Metals, Heavy analysis MeSH
- Aquaculture methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Waste Products MeSH
- Proteins MeSH
- Metals, Heavy MeSH
Screening of novel feedstuffs, that too for data-deficient (nutritionally) animals, is somewhat ambiguous or problematic. Through systematic meta-analyses, the present study formulated most up-to-date crayfish nutritional standards, against which a recyclable waste (biofloc biomass, BM) from intensive aquaculture systems was assessed as a novel protein source. Growth trajectory dependencies and thermal growth coefficient qualifying for good growth in crayfish (TGC 0.5-0.64 units) were benchmarked. Using these standards and a 7-week growth trial, BM's suitability as a novel protein source for red swamp crayfish Procambarus clarkii was evaluated through its graded inclusions in a commercial feed. Results suggest that BM can elevate growth at 33-66% inclusion in existing feed formulations. Beyond 66% inclusion, BM can deteriorate growth in crayfish due to high ash content (exceeding physiological limit > 14%), arginine deficiency (~ 14-20% lower than an optimum requirement), and insufficient non-protein energy: protein ratio (3.7 cal mg-1). Arginine is perhaps the most critical amino acid in dietary protein for crayfish, and deficient in BM. Although no critical bioaccumulation levels of heavy metals were breached by feeding 100% BM to crayfish, a mineral and heavy metal (Hg) stress seemed plausible. Crayfish raised solely on biofloc may not realize full growth potential.
See more in PubMed
Richman, N.I. et al. Multiple drivers of decline in the global status of freshwater crayfish (Decapoda: Astacidea). Philos. Trans. R. Soc. B Biol. Sci.370, 20140060 (2015). PubMed PMC
FAO FishStat. Global aquaculture production 1950–2018. FIGIS: FishStatPlus–universal software online query panel for fishery statistical time series. FAO Fisheries and Aquaculture Department, Rome. (2020) https://www.fao.org/fishery/statistics/global-aquaculture-production/query/en (accessed on: 06/2020)
Saoud, I.P., Garza De Yta, A. & Ghanawi, J. A review of nutritional biology and dietary requirements of redclaw crayfish Cherax quadricarinatus (von Martens 1868). Aquac. Nutr.18, 349–368 (2012).
NRC (National Research Council). Nutrient requirements of fish and shrimp. National Academies Press (2011). 10.17226/13039
Crab R, Defoirdt T, Bossier P, Verstraete W. Biofloc technology in aquaculture: beneficial effects and future challenges. Aquaculture. 2012;356–357:351–356. doi: 10.1016/j.aquaculture.2012.04.046. DOI
Arantes R, Schveitzer R, Quadros Seiffert W, Lapa KR, Vinatea L. Nutrient discharge, sludge quantity and characteristics in biofloc shrimp culture using two methods of carbohydrate fertilization. Aquac. Eng. 2017;76:1–8. doi: 10.1016/j.aquaeng.2016.11.002. DOI
Avnimelech Y. Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture. 1999;176:227–235. doi: 10.1016/S0044-8486(99)00085-X. DOI
Gamboa-Delgado J, Márquez-Reyes JM. Potential of microbial-derived nutrients for aquaculture development. Rev. Aquac. 2018;10:224–246. doi: 10.1111/raq.12157. DOI
Kuhn DD, Boardman GD, Lawrence AL, Marsh L, Flick GJ. Microbial floc meal as a replacement ingredient for fish meal and soybean protein in shrimp feed. Aquaculture. 2009;296:51–57. doi: 10.1016/j.aquaculture.2009.07.025. DOI
Schveitzer R, et al. Effect of different biofloc levels on microbial activity, water quality and performance of Litopenaeus vannamei in a tank system operated with no water exchange. Aquac. Eng. 2013;56:59–70. doi: 10.1016/j.aquaeng.2013.04.006. DOI
Poli, M.A., Schveitzer, R. & de Oliveira Nuñer, A.P. The use of biofloc technology in a South American catfish (Rhamdia quelen) hatchery: Effect of suspended solids in the performance of larvae. Aquac. Eng.66, 17–21 (2015).
Hargreaves, J.A. Biofloc production systems for aquaculture. Southern Regional Aquaculture Center, Publication no. 4503, 12 pp (2013).
Arantes R, Schveitzer R, Magnotti C, Lapa KR, Vinatea L. A comparison between water exchange and settling tank as a method for suspended solids management in intensive biofloc technology systems: effects on shrimp (Litopenaeus vannamei) performance, water quality and water use. Aquac. Res. 2017;48:1478–1490. doi: 10.1111/are.12984. DOI
Schveitzer R, et al. The role of sedimentation in the structuring of microbial communities in biofloc-dominated aquaculture tanks. Aquaculture. 2020;514:734493. doi: 10.1016/j.aquaculture.2019.734493. DOI
Ben Rebah, F., Mnif, W. & M. Siddeeg, S. Microbial flocculants as an alternative to synthetic polymers for wastewater treatment: A Review. Symmetry (Basel)10, 556 (2018).
van Rijn J. Waste treatment in recirculating aquaculture systems. Aquac. Eng. 2013;53:49–56. doi: 10.1016/j.aquaeng.2012.11.010. DOI
Gamboa-Delgado J, et al. Comparing the assimilation of dietary nitrogen supplied by animal-, plant- and microbial-derived ingredients in Pacific white shrimp Litopenaeus vannamei: A stable isotope study. Aquac. Rep. 2020;17:100294. doi: 10.1016/j.aqrep.2020.100294. DOI
Jones SW, Karpol A, Friedman S, Maru BT, Tracy BP. Recent advances in single cell protein use as a feed ingredient in aquaculture. Curr. Opin. Biotechnol. 2020;61:189–197. doi: 10.1016/j.copbio.2019.12.026. PubMed DOI
Glencross B, et al. Effective use of microbial biomass products to facilitate the complete replacement of fishery resources in diets for the black tiger shrimp Penaeus monodon. Aquaculture. 2014;431:12–19. doi: 10.1016/j.aquaculture.2014.02.033. DOI
IAFFD, International Aquaculture Feed Formulation Database. (2020). Feed Ingredients Composition Database (FICD) v5.1. Available online at https://www.iaffd.com/ (accessed on 29 September 2020)
Reigh RC, Ellis SC. Utilization of animal-protein and plant-protein supplements by red swamp crayfish Procambarus clarkii fed formulated diets. J. World Aquac. Soc. 1994;25:541–552. doi: 10.1111/j.1749-7345.1994.tb00823.x. DOI
Emerenciano, M., Gaxiola, G. & Cuzo, G. Biofloc Technology (BFT): A review for aquaculture application and animal food industry. In: Biomass now - cultivation and utilization (InTech, 2013). 10.5772/53902
Azhar MH, et al. Biofloc-based co-culture systems of Nile tilapia (Oreochromis niloticus) and redclaw crayfish (Cherax quadricarinatus) with different carbon–nitrogen ratios. Aquac. Int. 2020;28:1293–1304. doi: 10.1007/s10499-020-00526-z. DOI
Li J, et al. Juvenile Procambarus clarkii farmed using biofloc technology or commercial feed in zero-water exchange indoor tanks: a comparison of growth performance, enzyme activity and proximate composition. Aquac. Res. 2019;50:1834–1843. doi: 10.1111/are.14065. DOI
Gruber C, Tulonen J, Kortet R, Hirvonen H. Resource availability and predation risk influence contest behavior and dominance hierarchies in crayfish. Behav. Ecol. Sociobiol. 2016;70:1305–1317. doi: 10.1007/s00265-016-2139-6. DOI
Gamboa-Delgado J, et al. Assessment of the relative contribution of dietary nitrogen from fish meal and biofloc meal to the growth of Pacific white shrimp (Litopenaeus vannamei) Aquac. Res. 2017;48:2963–2972. doi: 10.1111/are.13129. DOI
Fimbres‐Acedo, Y.E. et al. Oreochromis niloticus aquaculture with biofloc technology, photoautotrophic conditions and Chlorella microalgae. Aquac. Res. are.14668 (2020). 10.1111/are.14668
Ekasari J, et al. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture. 2014;426–427:105–111. doi: 10.1016/j.aquaculture.2014.01.023. DOI
Ju ZY, et al. Determination of microbial community structures of shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquac. Res. 2008;39:118–133. doi: 10.1111/j.1365-2109.2007.01856.x. DOI
Zaglol NF, Eltadawy F. Study on chemical quality and nutrition value of fresh water crayfish (Procambarus clarkii) J. Arab. Aquacul. Soc. 2009;4:1–18.
Amine, T., Aiad, A. & Abu El-Nile, M. Evaluation of chemical quality and nutrition value of fresh water cray fish (Procambarus clarkii). J. High Inst. Public Heal.38, 1–13 (2008).
Tönges, S. et al. Physiological properties and tailored feeds to support aquaculture of marbled crayfish in closed systems. bioRxiv (2020). 10.1101/2020.02.25.964114
Zhou QC, et al. Dietary arginine requirement of juvenile Pacific white shrimp Litopenaeus vannamei. Aquaculture. 2012;364–365:252–258. doi: 10.1016/j.aquaculture.2012.08.020. DOI
Wu G, Morris SM. Arginine metabolism: nitric oxide and beyond. Biochem. J. 1998;336:1–17. doi: 10.1042/bj3360001. PubMed DOI PMC
Evoy D, Lieberman MD, Fahey TJ, Daly JM. Immunonutrition: the role of arginine. Nutrition. 1998;14:611–617. doi: 10.1016/S0899-9007(98)00005-7. PubMed DOI
D’Abramo LR, Robinson EH. Nutrition of crayfish. Rev. Aquat. Sci. 1989;1:711–728.
Brown PB. Physiological adaptations in the gastrointestinal tract of crayfish. Am. Zool. 1995;35:20–27. doi: 10.1093/icb/35.1.20. DOI
Sabry Neto, H., Santaella, S.T. & Nunes, A.J.P. Bioavailability of crude protein and lipid from biofloc meals produced in an activated sludge system for white shrimp, Litopenaeus vannamei. Rev. Bras. Zootec.44, 269–275 (2015).
Piedad-Pascual, F. Mineral requirements of Penaeids. In: Advances in Tropical Aquaculture, Workshop at Tahiti, French Polynesia AQUACOP IFREMER. Actes de Colloque9, 309–318 (1989).
Kanazawa A, Teshima S, Sasaki M. Requirements of the juvenile prawn for calcium, phosphorus, magnesium, potassium, copper, manganese, and iron. Mem. Fac. Fish. Kagoshima Univ. 1984;33:63–71.
Pequeux A. Osmotic regulation in crustaceans. J. Crustac. Biol. 1995;15:1. doi: 10.2307/1549010. DOI
Bureau, D.P., Kaushik, S.J. & Cho, C.Y Bioenergetics. In: J.E. Halver & R.W. Hardy (eds) Fish Nutrition, 3rd edition (Academic Press/Elsevier, Amsterdam), 2–61. (2002).
Kouba A, Hamáčková J, Buřič M, Policar T, Kozák P. Use of three forms of decapsulated Artemia cysts as food for juvenile noble crayfish (Astacus astacus) Czech J. Anim. Sci. 2011;56:114–118. doi: 10.17221/1301-CJAS. DOI
Veselý, L. et al. Salinity tolerance of marbled crayfish Procambarus fallax f. virginalis. Knowl. Manag. Aquat. Ecosyst. (2017). 10.1051/kmae/2017014
Cortes-jacinto E, Villarreal-colmenares H, Civera-cerecedo R, Naranjo-paramo J. Effect of dietary protein level on the growth and survival of pre-adult freshwater crayfish Cherax quadricarinatus (von Martens) in monosex culture. Aquac. Res. 2004;35:71–79. doi: 10.1111/j.1365-2109.2004.00988.x. DOI
Kouba A, Buřič M, Kozák P. Bioaccumulation and effects of heavy metals in crayfish: a review. Water, Air, Soil Pollut. 2010;211:5–16. doi: 10.1007/s11270-009-0273-8. DOI
European Commission. Commission Regulation No 466/2001 of March 2001 setting maximum levels for certain contaminants in foodstuffs. European commission 2001R0466/20051129, 17p (2005). https://op.europa.eu/s/n7e6