Selected Physicochemical Properties of Diamond Like Carbon (DLC) Coating on Ti-13Nb-13Zr Alloy Used for Blood Contacting Implants
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
07/020/BKM_20/0060
Politechnika Śląska
PubMed
33187087
PubMed Central
PMC7697592
DOI
10.3390/ma13225077
PII: ma13225077
Knihovny.cz E-resources
- Keywords
- DLC layer, EIS, Ti-13Nb-13Zr alloy, potentiodynamic test, scratch test, surface wettability,
- Publication type
- Journal Article MeSH
Despite high interest in the issues of hemocompatibility of titanium implants, particularly those made of the Ti-13Nb-13Zr alloy, the applied methods of surface modification still do not always guarantee the physicochemical properties required for their safe operation. The factors that reduce the efficiency of the application of titanium alloys in the treatment of conditions of the cardiovascular system include blood coagulation and fibrous proliferation within the vessel's internal walls. They result from their surfaces' physicochemical properties not being fully adapted to the specifics of the circulatory system. Until now, the generation and development mechanics of these adverse processes are not fully known. Thus, the fundamental problem in this work is to determine the correlation between the physicochemical properties of the diamond like carbon (DLC) coating (shaped by the technological conditions of the process) applied onto the Ti-13Nb-13Zr alloy designed for contact with blood and its hemocompatibility. In the paper, microscopic metallographic, surface roughness, wettability, free surface energy, hardness, coating adhesion to the substrate, impendence, and potentiodynamic studies in artificial plasma were carried out. The surface layer with the DLC coating ensures the required surface roughness and hydrophobic character and sufficient pitting corrosion resistance in artificial plasma. On the other hand, the proposed CrN interlayer results in better adhesion of the coating to the Ti-13Nb-13Zr alloy. This type of coating is an alternative to the modification of titanium alloy surfaces using various elements to improve the blood environment's hemocompatibility.
See more in PubMed
Nalezinkova M. In vitro hemocompatibility testing of medical devices. Thromb. Res. 2020;195:146–150. doi: 10.1016/j.thromres.2020.07.027. PubMed DOI
Siedlecki A. Hemocompatibility of Biomaterials for Clinical Applications—Blood-Biomaterials Interactions. Woodhead Publishing; Sawston, UK: 2018.
Dee K.C., Puelo D.A., Bizios R. Tissue- Biomaterial Interactions. John Wiley & Sons; Hoboken, NJ, USA: 2003.
Galeano-Osorio D.S., Vargas S., Velez J.M., Mello A., Tanaka M.N., Castano C.E. Hemocompatibility of plasma nitride 316L stainless steel: Effect of processing temperature. Appl. Surf. Sci. 2020;509:144704. doi: 10.1016/j.apsusc.2019.144704. DOI
Mustafa K., Odén A., Wennerberg A., Hultenby K., Arvidson K. The influence of surface topography of ceramics abutments on the attachment and proliferation of human oral fibroblasts. Biomaterials. 2005;26:373–381. doi: 10.1016/j.biomaterials.2004.02.037. PubMed DOI
Oliveira S.M., Alves N.M., Mano J.F. Cell interactions with superhydrophilic and superhydrophobic surfaces. J. Adhes. Sci. Technol. 2014;28:843–863. doi: 10.1080/01694243.2012.697776. DOI
Liu X., Chu P.K., Ding C. Surface modification of titanium, titanium alloys and related materials for biomedical applications. Mater. Sci. Eng. R Rep. 2004;47:49–121. doi: 10.1016/j.mser.2004.11.001. DOI
Basiaga M., Walke W., Paszenda Z., Kajzer A. The effect of EO and steam sterilization on the mechanical and electrochemical properties of titanium grade 4. Mater. Tehnol. 2016;50:153–158. doi: 10.17222/mit.2014.241. DOI
Zhu X., Chen J., Scheideler L., Reichl R., Geis-Gerstorfer J. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials. 2004;25:4087–4103. doi: 10.1016/j.biomaterials.2003.11.011. PubMed DOI
Chiang H.-J., Chou H.-H., Ou K.-L., Sugiatno E., Ruslin M., Waris R.A., Huang C.-F., Liu C.-M., Peng P.-W. Evaluation of surface characteristics and hemocompatibility on the oxygen plasma-modified biomedical titanium. Metals. 2018;8:513. doi: 10.3390/met8070513. DOI
Rimondini L., Fini M., Giardino R. The microbial infection of biomaterials: A challenge for clinicians and researchers. A short review. J. Appl. Biomater. Biomech. 2005;3:1–10. doi: 10.1177/228080000500300101. PubMed DOI
Lee F.-P., Wang D.-J., Chen L.-K., Kung C.-M., Wu Y.-C., Ou K.-L., Yu C.-H. Antibacterial nanostructured composite films for biomedical applications: Microstructural characteristics, biocompatibility, and antibacterial mechanisms. Biofouling. 2013;29:295–305. doi: 10.1080/08927014.2013.769967. PubMed DOI
Subramani K., Jung R.E., Molenberg A., Hammerle C.H.F. Biofilm on dental implants: A review of the literature. Int. J. Oral Maxillofac. Implants. 2009;24:616–626. doi: 10.5167/uzh-26110. PubMed DOI
Xu L.C., Bauer J., Siedlecki C.A. Proteins, platelets, and blood coagulation at biomaterial interfaces. Colloids Surf. B Biointerfaces. 2014;124:49–68. doi: 10.1016/j.colsurfb.2014.09.040. PubMed DOI PMC
Hou P.-J., Ou K.-L., Wang C.-C., Huang C.-F., Ruslin M., Sugiatno E., Yang T.-S., Chou H.-H. Hybrid micro/nanostructural surface offering improved stress distribution and enhanced osseointegration properties of the biomedical titanium implant. J. Mech. Behav. Biomed. Mater. 2018;79:173–180. doi: 10.1016/j.jmbbm.2017.11.042. PubMed DOI
Fedel M. Blood compatibility of diamond-like carbon (DLC) coatings. In: Narayan R., editor. Diamond-Based Materials for Biomedical Applications. Woodhead Publishing; Sawston, UK: 2013. pp. 71–102.
Roy M. Materials Under Extreme Conditions. Elsevier; Amsterdam, The Netherlands: 2017. Protective hard coatings for tribological applications.
Zeng H., Jarvik R., Catausan G., Moldovan N., Carlisle J. Diamond coated artificial cardiovascular devices. Surf. Coat. Technol. 2016;302:420–425. doi: 10.1016/j.surfcoat.2016.06.030. PubMed DOI PMC
Fedel M., Motta A., Maniglio D., Migliaresi C. Surface properties and blood compatibility of commercially available diamond-like carbon coatings for cardiovascular devices. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008;90:338–349. doi: 10.1002/jbm.b.31291. PubMed DOI
Bayón R., Igartua A., González J., De Gopegui U.R. Influence of the carbon content on the corrosion and tribocorrosion performance of Ti-DLC coatings for biomedical alloys. Tribol. Int. 2015;88:115–125. doi: 10.1016/j.triboint.2015.03.007. DOI
Zhang T.F., Deng Q.Y., Liu B., Wu B.J., Jing F.J., Leng Y.X., Huang N. Wear and corrosion properties of diamond like carbon (DLC) coating on stainless steel, CoCrMo and Ti6Al4V substrates. Surf. Coat. Technol. 2015;273:12–19. doi: 10.1016/j.surfcoat.2015.03.031. DOI
Zhao G.-H., Aune R.E., Espallargas N. Tribocorrosion studies of metallic biomaterials: The effect of plasma nitriding and DLC surface modifications. J. Mech. Behav. Biomed. 2016;63:100–114. doi: 10.1016/j.jmbbm.2016.06.014. PubMed DOI
Hauert R., Falub C.V., Thorwarth G., Thorwarth K., Affolter C., Stiefel M., Podleska L.E., Taeger G. Retrospective life time estimation of failed and explanted diamond-like carbon coated hip joint balls. Acta Biomater. 2012;8:3170–3176. doi: 10.1016/j.actbio.2012.04.016. PubMed DOI
Cui L., Lu Z., Wang L. Environmental effect on the load-dependent friction behavior of a diamond-like carbon film. Tribol. Int. 2015;82:195–199. doi: 10.1016/j.triboint.2014.10.014. DOI
Manhabosco T.M., Müller I.L. Tribo corrosion of diamond-like carbon deposited on Ti6Al4V. Tribol. Lett. 2009;33:193–197. doi: 10.1007/s11249-009-9408-8. DOI
Erdemir A., Donnet C. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D Appl. Phys. 2006;39:R311–R327. doi: 10.1088/0022-3727/39/18/R01. DOI
Ge F., Shao T., Jia C., Li P., Huang F. Tribological behaviors of a magnetron sputtered CrSiN coating under ambient air and wet environments. Surf. Coat. Technol. 2017;332:304–311. doi: 10.1016/j.surfcoat.2017.05.093. DOI
Basiaga M., Staszuk M., Walke W. Mechanical properties of atomic layer deposition (ALD) TiO2 layers on stainless steel substrates. Mater. Werkst. 2016;47:512–520. doi: 10.1002/mawe.201600527. DOI
Tyagi A., Walia R., Murtaza Q., Pandey S.M., Tyagi P.K., Bajaj B. A critical review of diamond like carbon coating for wear resistance applications. Int. J. Refract. Met. Hard Mater. 2019;78:107–122. doi: 10.1016/j.ijrmhm.2018.09.006. DOI
ASTM . ASTM F-1713: Standard Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications. ASTM; West Conshohocken, PA, USA: 2003.
ASTM . ASTM E112: Standard Test Methods for Determining Average Grain Size. ASTM; West Conshohocken, PA, USA: 2010.
PKN . PN–ISO 4288:1997: Wymagania Geometryczne Wyrobów. Struktura Geometryczna Powierzchni. Zasady i Procedury Oceny Struktury Geometrycznej Powierzchni, Metoda Profilowa. PKN; Warsaw, Poland: 1997.
PKN . PN-EN ISO 20502:2016-05: Ceramika Wysokiej Jakości (Ceramika Zaawansowana, Techniczna Ceramika Zaawansowana) -Oznaczanie Adhezji Powłok Ceramicznych w Próbie Zarysowania. PKN; Warsaw, Poland: 2016.
PKN . PN-EN ISO 10993-15: Biologiczna Ocena Wyrobów Medycznych—Część 15: Identyfikacja i Oznaczanie Ilościowe Produktów Degradacji Metali i Stopów. PKN; Warsaw, Poland: 2019.
Xu L.C., Siedlecki C. Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials. 2007;28:3273–3283. doi: 10.1016/j.biomaterials.2007.03.032. PubMed DOI PMC
Liber-Kneć A., Łagan S. Zastosowanie pomiarów kąta zwilżania i swobodnej energii powierzchniowej do charakterystyki powierzchni polimerów wykorzystywanych w medycynie. Polim. Med. 2014;44:29–37. PubMed
Kaczmarek H., Bajer K. Metody badania biodegradacji materiałów polimerowych. Polimery. 2006;51:716–721. doi: 10.14314/polimery.2006.716. DOI
Kim M.S., Khang G., Lee H.B. Gradient polymer surfaces for biomedical applications. Prog. Polym. Sci. 2008;33:138–164. doi: 10.1016/j.progpolymsci.2007.06.001. DOI
Nair K., Muraleedharan C.V., Bhuvaneshwar G.S. Developments in mechanical heart valve prosthesis. Sadhana. 2003;28:575–587. doi: 10.1007/BF02706448. DOI