Associations of plasma phospholipid cis-vaccenic acid with insulin resistance markers in non-diabetic men with hyperlipidemia
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Charles University Research Program, Cooperatio-Gastroenterology
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
Charles University Research Program, Cooperatio-Gastroenterology
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
Charles University Research Program, Cooperatio-Gastroenterology
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
Charles University Research Program, Cooperatio-Gastroenterology
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
MH CZ DRO-VFN64165
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
MH CZ DRO-VFN64165
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
MH CZ DRO-VFN64165
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
NU23-01-00288
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
MH CZ DRO-VFN64165
Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
PubMed
39261487
PubMed Central
PMC11390737
DOI
10.1038/s41387-024-00332-z
PII: 10.1038/s41387-024-00332-z
Knihovny.cz E-zdroje
- MeSH
- apolipoproteiny B krev MeSH
- biologické markery * krev MeSH
- dospělí MeSH
- fosfolipidy * krev MeSH
- hyperlipidemie * krev MeSH
- inzulin krev MeSH
- inzulinová rezistence * MeSH
- kyseliny olejové * krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- apolipoproteiny B MeSH
- biologické markery * MeSH
- cis-vaccenic acid MeSH Prohlížeč
- fosfolipidy * MeSH
- inzulin MeSH
- kyseliny olejové * MeSH
BACKGROUND: The role of fatty acids (FA) in the pathogenesis of insulin resistance and hyperlipidemia is a subject of intensive research. Several recent works have suggested cis-vaccenic acid (cVA) in plasma lipid compartments, especially in plasma phospholipids (PL) or erythrocyte membranes, could be associated with markers of insulin sensitivity and cardiovascular health. Nevertheless, not all the results of research work testify to these beneficial effects of cVA. Therefore, we decided to investigate the relations of proportion of cVA in plasma PL to markers of insulin resistance in hyperlipidemic men. SUBJECTS: In 231 men (median age 50) with newly diagnosed hyperlipidemia, we analyzed basic clinical parameters together with FA composition of plasma PL and stratified them according to the content of cVA into upper quartile (Q4) and lower quartile (Q1) groups. We examined also small control group of 50 healthy men. RESULTS: The individuals in Q4 differed from Q1 by lower plasma insulin (p < 0.05), HOMA-IR values (p < 0.01), and apolipoprotein B concentrations (p < 0.001), but by the higher total level of nonesterified FA (p < 0.01). Both groups had similar age, anthropometrical, and other lipid parameters. In plasma PL, the Q4 group had lower content of the sum of n-6 polyunsaturated FA, due to decrease of γ-linolenic and dihomo-γ-linolenic acids, whereas the content of monounsaturated FA (mainly oleic and palmitoleic) was in Q4 higher. CONCLUSIONS: Our results support hypothesis that plasma PL cVA could be associated with insulin sensitivity in men with hyperlipidemia.
Zobrazit více v PubMed
de Carvalho CCCR, Caramujo MJ. The various roles of fatty acids. Molecules. 2018;23:2583. 10.3390/molecules23102583 PubMed DOI PMC
Guillou H, Zadravec D, Martin PG, Jacobsson A. The key roles of elongases and desaturases in mammalian fatty acid metabolism: insights from transgenic mice. Prog Lipid Res. 2010;49:186–99. 10.1016/j.plipres.2009.12.002 PubMed DOI
Zeman M, Vecka M, Jáchymová M, Jirák R, Tvrzická E, Staňková B, et al. Fatty acid CoA ligase-4 gene polymorphism influences fatty acid metabolism in metabolic syndrome, but not in depression. Tohoku J Exp Med. 2009;217:287–93. 10.1620/tjem.217.287 PubMed DOI
Smith CE, Ordovás JM. Fatty acid interactions with genetic polymorphisms for cardiovascular disease. Curr Opin Clin Nutr Metab Care. 2010;13:139–44. 10.1097/MCO.0b013e3283357287 PubMed DOI PMC
Yaribeygi H, Farrokhi FR, Butler AE, Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J Cell Physiol. 2019;234:8152–61. 10.1002/jcp.27603 PubMed DOI
Warensjö E, Risérus U, Vessby B. Fatty acid composition of serum lipids predicts the development of the metabolic syndrome in men. Diabetologia. 2005;48:1999–2005. 10.1007/s00125-005-1897-x PubMed DOI
Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576:51–60. 10.1038/s41586-019-1797-8 PubMed DOI
Jornayvaz FR, Samuel VT, Shulman GI. The role of muscle insulin resistance in the pathogenesis of atherogenic dyslipidemia and nonalcoholic fatty liver disease associated with the metabolic syndrome. Annu Rev Nutr. 2010;30:273–90. 10.1146/annurev.nutr.012809.104726 PubMed DOI PMC
Macášek J, Vecka M, Žák A, Urbánek M, Krechler T, Petruželka L, et al. Plasma fatty acid composition in patients with pancreatic cancer: correlations to clinical parameters. Nutr Cancer. 2012;64:946–55. 10.1080/01635581.2012.716138 PubMed DOI
Vařeka T, Vecka M, Jirák R, Tvrzická E, Macášek J, Žák A, et al. Plasma fatty acid profile in depressive disorder resembles insulin resistance state. Neuro Endocrinol Lett. 2012;33:83–86. PubMed
Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015;14:121 10.1186/s12944-015-0123-1 10.1186/s12944-015-0123-1 PubMed DOI PMC
Wu JHY, Marklund M, Imamura F, Tintle N, Ardisson Korat AV, de Goede J, et al. Omega-6 fatty acid biomarkers and incident type 2 diabetes: pooled analysis of individual-level data for 39 740 adults from 20 prospective cohort studies. Lancet Diabetes Endocrinol. 2017;5:965–74. 10.1016/S2213-8587(17)30307-8 PubMed DOI PMC
Wang L, Folsom AR, Zheng ZJ, Pankow JS, Eckfeldt JH. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am J Clin Nutr. 2003;78:91–8. 10.1093/ajcn/78.1.91 PubMed DOI
Perna M, Hewlings S. Saturated fatty acid chain length and risk of cardiovascular disease: a systematic review. Nutrients. 2022;15:30. 10.3390/nu15010030 PubMed DOI PMC
Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134:933–44. 10.1016/j.cell.2008.07.048 PubMed DOI PMC
de Souza CO, Teixeira AAS, Biondo LA, Lima Junior EA, Batatinha HAP, Rosa Neto JC. Palmitoleic acid improves metabolic functions in fatty liver by PPARα-dependent AMPK activation. J Cell Physiol. 2017;232:2168–77. 10.1002/jcp.25715 PubMed DOI
Paillard F, Catheline D, Duff FL, Bouriel M, Deugnier Y, Pouchard M, et al. Plasma palmitoleic acid, a product of stearoyl-coA desaturase activity, is an independent marker of triglyceridemia and abdominal adiposity. Nutr Metab Cardiovasc Dis. 2008;18:436–40. 10.1016/j.numecd.2007.02.017 PubMed DOI
Lindgärde F, Vessby B, Ahrén B. Serum cholesteryl fatty acid composition and plasma glucose concentrations in Amerindian women. Am J Clin Nutr. 2006;84:1009–13. 10.1093/ajcn/84.5.1009 PubMed DOI
Zong G, Ye X, Sun L, Li H, Yu Z, Hu FB, et al. Associations of erythrocyte palmitoleic acid with adipokines, inflammatory markers, and the metabolic syndrome in middle-aged and older Chinese. Am J Clin Nutr. 2012;96:970–6. 10.3945/ajcn.112.040204 PubMed DOI PMC
Wang Y, Botolin D, Xu J, Christian B, Mitchell E, Jayaprakasam B, et al. Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J Lipid Res. 2006;47:2028–41. 10.1194/jlr.M600177-JLR200 PubMed DOI PMC
de Souza CO, Vannice GK, Rosa Neto JC, Calder PC. Is palmitoleic acid a plausible nonpharmacological strategy to prevent or control chronic metabolic and inflammatory disorders? Mol Nutr Food Res. 2018;62:1700504.10.1002/mnfr.201700504 PubMed DOI
Djoussé L, Matsumoto C, Hanson NQ, Weir NL, Tsai MY, Gaziano JM. Plasma cis-vaccenic acid and risk of heart failure with antecedent coronary heart disease in male physicians. Clin Nutr. 2014;33:478–82. 10.1016/j.clnu.2013.07.001 PubMed DOI PMC
Johnston LW, Harris SB, Retnakaran R, Zinman B, Giacca A, Liu Z, et al. Longitudinal associations of phospholipid and cholesteryl ester fatty acids with disorders underlying diabetes. J Clin Endocrinol Metab. 2016;101:2536–44. 10.1210/jc.2015-4267 PubMed DOI
Ma W, Wu JHY, Wang Q, Lemaitre RN, Mukamal KJ, Djousse I, et al. Prospective association of fatty acids in de novo lipogenesis pathway with risk of type 2 diabetes: the Cardiovascular Health Study1–5. Am J Clin Nutr. 2015;101:153–63. 10.3945/ajcn.114.092601 PubMed DOI PMC
Ramos P, Bush NC, Jensen MD. Sex and depot differences in palmitoleic acid content of human blood and fat. Lipids. 2020;55:63–72. 10.1002/lipd.12212 PubMed DOI PMC
Childs CE, Romeu-Nadal M, Burdge GC, Calder PC. Gender differences in the n-3 fatty acid content of tissues. Proc Nutr Soc. 2008;67:19–27. 10.1017/S0029665108005983 PubMed DOI
Varlamov O, Bethea CL, Roberts CT Jr. Sex-specific differences in lipid and glucose metabolism. Front Endocrinol (Lausanne). 2015;5:241. 10.3389/fendo.2014.00241 PubMed DOI PMC
Žák A, Tvrzická E, Vecka M, Jáchymová M, Duffková L, Staňková B, et al. Severity of metabolic syndrome unfavorably influences oxidative stress and fatty acid metabolism in men. Tohoku J Exp Med. 2007;212:359–71. 10.1620/tjem.212.359 PubMed DOI
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9. 10.1007/BF00280883 PubMed DOI
Vecka M, Tvrzická E, Staňková B, Žák A. Effect of column and software on gas chromatographic determination of fatty acids. J Chromatogr B Anal Technol Biomed Life Sci. 2002;770:91–9.10.1016/S1570-0232(01)00630-4 PubMed DOI
Tvrzická E, Vecka M, Staňková B, Žák A. Analysis of fatty acids in plasma lipoproteins by gas chromatography-flame ionisation detection. Quantitative aspects. Anal Chim Acta. 2002;465:337–50.10.1016/S0003-2670(02)00396-3 DOI
Macášek J, Zeman M, Žák A, Staňková B, Vecka M. Altered indices of fatty acid elongases ELOVL6, ELOVL5, and ELOVL2 activities in patients with impaired fasting glycemia. Metab Syndr Relat Disord. 2021;19:386–92. 10.1089/met.2021.0012 PubMed DOI
Žák A, Burda M, Vecka M, Zeman M, Tvrzická E, Staňková B. Fatty acid composition indicates two types of metabolic syndrome independent of clinical and laboratory parameters. Physiol Res. 2014;63:S375–85. 10.33549/physiolres.932868 PubMed DOI
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2024
Thompson FE, Subar AF. Dietary assessment methodology. In: Coulston AM, Boushey CJ, Ferruzzi MG, editors. Nutrition in the prevention and treatment of disease. USA: Elsevier Inc.; 2013. pp. 5–46.
Weir NL, Steffen BT, Guan W, Johnson LM, Djousse L, Mukamal KJ, et al. Circulating omega-7 fatty acids are differentially related to metabolic dysfunction and incident type II diabetes: the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Metab. 2020;46:319–25. 10.1016/j.diabet.2019.10.005 PubMed DOI PMC
Kröger J, Zietemann V, Enzenbach C, Weikert C, Jansen EH, Döring F, et al. Erythrocyte membrane phospholipid fatty acids, desaturase activity, and dietary fatty acids in relation to risk of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am J Clin Nutr. 2011;93:127–42. 10.3945/ajcn.110.005447 PubMed DOI
Rehman K, Haider K, Jabeen K, Akash MSH. Current perspectives of oleic acid: Regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes. Rev Endocr Metab Disord. 2020;21:631–43. 10.1007/s11154-020-09549-6 PubMed DOI
Vessby B, Aro A, Skarfors E, Berglund L, Salminen I, Lithell H. The risk to develop NIDDM is related to the fatty acid composition of the serum cholesterol esters. Diabetes. 1994;43:1353–7. 10.2337/diab.43.11.1353 PubMed DOI
Qureshi W, Santaren ID, Hanley AJ, Watkins SM, Lorenzo C, Wagenknecht LE. Risk of diabetes associated with fatty acids in the de novo lipogenesis pathway is independent of insulin sensitivity and response: the Insulin Resistance Atherosclerosis Study (IRAS). BMJ Open Diabetes Res Care. 2019;7:e000691. 10.1136/bmjdrc-2019-000691 PubMed DOI PMC
Zeman M, Vecka M, Burda M, Tvrzická E, Staňková B, Macášek J, et al. Fatty acid composition of plasma phosphatidylcholine determines body fat parameters in subjects with metabolic syndrome-related traits. Metab Syndr Relat Disord. 2017;15:371–8. 10.1089/met.2017.0040 PubMed DOI
Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46:3–10. 10.2337/diab.46.1.3 PubMed DOI
Ni Y, Zhao L, Yu H, Ma X, Bao Y, Rajani C, et al. Circulating unsaturated fatty acids delineate the metabolic status of obese individuals. EBioMedicine. 2015;2:1513–22. 10.1016/j.ebiom.2015.09.004 PubMed DOI PMC
Salgin B, Ong KK, Thankamony A, Emmett P, Wareham NJ, Dunger DB. Higher fasting plasma free fatty acid levels are associated with lower insulin secretion in children and adults and a higher incidence of type 2 diabetes. J Clin Endocrinol Metab. 2012;97:3302–9. 10.1210/jc.2012-1428 PubMed DOI
Vessby B, Uusitupa M, Hermansen K, Riccardi G, Rivellese AA, Tapsell LC.KANWU Study et al. Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: the KANWU study. Diabetologia. 2001;44:312–9. 10.1007/s001250051620 PubMed DOI
Parillo M, Rivelles AA, Ciardullo AV, Capaldo B, Giacco A, Genovese S, et al. A high monounsaturated-fat/low-carbohydrate diet improves peripheral insulin sensitivity in non-insulin-dependent diabetic patients. Metabolism. 1992;41:1373–8. 10.1016/0026-0495(92)90111-M PubMed DOI
Abdelmagid SA, Clarke SE, Nielsen DE, Badawi A, El-Sohemy A, Mutch DM, et al. Comprehensive profiling of plasma fatty acid concentrations in young healthy Canadian adults. PLoS ONE. 2015;10:e0116195. 10.1371/journal.pone.0116195 PubMed DOI PMC
Chandra K, Jain V, Jain SK. Plasma non-esterified fatty acids (NEFA) in type 2 diabetes mellitus: evidence on pathophysiology. J Diabetes Clin Res. 2021;3:46–50.
Jacome-Sosa MM, Borthwick F, Mangat R, Uwiera R, Reaney MJ, Shen J, et al. Diets enriched in trans-11 vaccenic acid alleviate ectopic lipid accumulation in a rat model of NAFLD and metabolic syndrome. J Nutr Biochem. 2014;25:692–701. 10.1016/j.jnutbio.2014.02.011 PubMed DOI
Tripathy S, Torres-Gonzalez M, Jump DB. Elevated hepatic fatty acid elongase-5 activity corrects dietary fat induced hyperglycemia in obese C57BL/6J mice. J Lipid Res. 2010;51:2642–54. 10.1194/jlr.M006080 PubMed DOI PMC
Moon YA, Hammer RE, Horton JD. Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. J Lipid Res. 2009;50:412–23. 10.1194/jlr.M800383-JLR200 PubMed DOI PMC
Jump DB, Tripathy S, Depner CM. Fatty acid-regulated transcription factors in the liver. Annu Rev Nutr. 2013;33:249–69. 10.1146/annurev-nutr-071812-161139 PubMed DOI PMC
Falamarzi K, Malekpour M, Tafti MF, Azarpira N, Behboodi M, Zarei M. The role of FGF21 and its analogs on liver associated diseases. Front Med (Lausanne). 2022;9:967375. 10.3389/fmed.2022.967375 PubMed DOI PMC
Jia Y, Yu H, Liang J, Zhang Q, Sun J, Yang H, et al. Increased FGF-21 improves ectopic lipid deposition in the liver and skeletal muscle. Nutrients. 2024;16:1254. 10.3390/nu16091254 PubMed DOI PMC
Warensjö E, Sundström J, Vessby B, Cederholm T, Risérus U. Markers of dietary fat quality and fatty acid desaturation as redictors of total and cardiovascular mortality: a population-based prospective study. Am J Clin Nutr. 2008;88:203–9. 10.1093/ajcn/88.1.203 PubMed DOI
Ahotupa M, Ruutu M, Mäntylä E. Simple methods of quantifying oxidation products and antioxidant potential of low density lipoproteins. Clin Biochem. 1996;29:139–44. 10.1016/0009-9120(95)02043-8 PubMed DOI
Zeman M, Žák A, Vecka M, Tvrzická E, Romaniv S, Konárková M. Treatment of hypertriglyceridaemia with fenofibrate, fatty acid composition of plasma and LDL, and their relations to parameters of lipoperoxidation of LDL. Ann N Y Acad Sci. 2002;967:336–41. 10.1111/j.1749-6632.2002.tb04289.x PubMed DOI
Murdolo G, Piroddi M, Luchetti F, Tortoioli C, Canonico B, Zerbinati C, et al. Oxidative stress and lipid peroxidation by-products at the crossroad between adipose organ dysregulation and obesity-linked insulin resistance. Biochimie. 2013;95:585–94. 10.1016/j.biochi.2012.12.014 PubMed DOI