Predicting Sex From EEG: Validity and Generalizability of Deep-Learning-Based Interpretable Classifier
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33192274
PubMed Central
PMC7652844
DOI
10.3389/fnins.2020.589303
Knihovny.cz E-zdroje
- Klíčová slova
- EEG, biomarkers, classification, explainable artificial intelligence, machine learning, major depressive disorder, sexual dimorsphism,
- Publikační typ
- časopisecké články MeSH
Explainable artificial intelligence holds a great promise for neuroscience and plays an important role in the hypothesis generation process. We follow-up a recent machine learning-oriented study that constructed a deep convolutional neural network to automatically identify biological sex from EEG recordings in healthy individuals and highlighted the discriminative role of beta-band power. If generalizing, this finding would be relevant not only theoretically by pointing to some specific neurobiological sexual dimorphisms, but potentially also as a relevant confound in quantitative EEG diagnostic practice. To put this finding to test, we assess whether the automatic identification of biological sex generalizes to another dataset, particularly in the presence of a psychiatric disease, by testing the hypothesis of higher beta power in women compared to men on 134 patients suffering from Major Depressive Disorder. Moreover, we construct ROC curves and compare the performance of the classifiers in determining sex both before and after the antidepressant treatment. We replicate the observation of a significant difference in beta-band power between men and women, providing classification accuracy of nearly 77%. The difference was consistent across the majority of electrodes, however multivariate classification models did not generally improve the performance. Similar results were observed also after the antidepressant treatment (classification accuracy above 70%), further supporting the robustness of the initial finding.
Zobrazit více v PubMed
Arns M., Drinkenburg W. H., Fitzgerald P. B., Kenemans J. L. (2012). Neurophysiological predictors of non-response to rTMS in depression. Brain Stimul. 5, 569–576. 10.1016/j.brs.2011.12.003 PubMed DOI
Bares M., Brunovsky M., Novak T., Kopecek M., Stopkova P., Sos P., et al. . (2010). The change of prefrontal QEEG theta cordance as a predictor of response to bupropion treatment in patients who had failed to respond to previous antidepressant treatments. Eur. Neuropsychopharmacol. 20, 459–466. 10.1016/j.euroneuro.2010.03.007 PubMed DOI
Bares M., Brunovsky M., Novak T., Kopecek M., Stopkova P., Sos P., et al. (2015a). QEEG theta cordance in the prediction of treatment outcome to prefrontal repetitive transcranial magnetic stimulation or venlafaxine ER in patients with major depressive disorder. Clin. EEG Neurosci. 46, 73–80. 10.1177/1550059413520442 PubMed DOI
Bares M., Novak T., Kopecek M., Brunovsky M., Stopkova P., Hschl C. (2015b). The effectiveness of prefrontal theta cordance and early reduction of depressive symptoms in the prediction of antidepressant treatment outcome in patients with resistant depression: analysis of naturalistic data. Eur. Arch. Psychiatry Clin. Neurosci. 265, 73–82. 10.1007/s00406-014-0506-8 PubMed DOI
Bigdely-Shamlo N., Mullen T., Kothe C., Su K.-M., Robbins K. A. (2015). The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinform. 9:16. 10.3389/fninf.2015.00016 PubMed DOI PMC
Carlson T., Goddard E., Kaplan D. M., Klein C., Ritchie J. B. (2018). Ghosts in machine learning for cognitive neuroscience: moving from data to theory. NeuroImage 180, 88–100. 10.1016/j.neuroimage.2017.08.019 PubMed DOI
De Gruttola V. G., Clax P., DeMets D. L., Downing G. J., Ellenberg S. S., Friedman L., et al. . (2001). Considerations in the evaluation of surrogate endpoints in clinical trials: summary of a national institutes of health workshop. Control. Clin. Trials 22, 485–502. 10.1016/S0197-2456(01)00153-2 PubMed DOI
Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21. 10.1016/j.jneumeth.2003.10.009 PubMed DOI
Fischl B., van der Kouwe A., Destrieux C., Halgren E., Sgonne F., Salat D. H., et al. . (2004). Automatically parcellating the human cerebral cortex. Cereb. Cortex 14, 11–22. 10.1093/cercor/bhg087 PubMed DOI
Glaser J. I., Benjamin A. S., Farhoodi R., Kording K. P. (2019). The roles of supervised machine learning in systems neuroscience. Prog. Neurobiol. 175, 126–137. 10.1016/j.pneurobio.2019.01.008 PubMed DOI PMC
Jenkinson M., Smith S. (2001). A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156. 10.1016/S1361-8415(01)00036-6 PubMed DOI
Knott V., Mahoney C., Kennedy S., Evans K. (2001). EEG power, frequency, asymmetry and coherence in male depression. Psychiatry Res. 106, 123–140. 10.1016/S0925-4927(00)00080-9 PubMed DOI
Langlotz C. P., Allen B., Erickson B. J., Kalpathy-Cramer J., Bigelow K., Cook T. S., et al. . (2019). A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology 291, 781–791. 10.1148/radiol.2019190613 PubMed DOI PMC
Lieber A. L., Prichep L. S. (1988). Diagnosis and subtyping of depressive disorders by quantitative electroencephalography: I. discriminant analysis of selected variables in untreated depressives. Hillside J. Clin. Psychiatry 10, 71–83. PubMed
Maggipinto T., Bellotti R., Amoroso N., Diacono D., Donvito G., Lella E., et al. . (2017). Dti measurements for Alzheimer's classification. Phys. Med. Biol. 62:2361. 10.1088/1361-6560/aa5dbe PubMed DOI
Marblestone A. H., Wayne G., Kording K. P. (2016). Toward an integration of deep learning and neuroscience. Front. Comput. Neurosci. 10:94. 10.3389/fncom.2016.00094 PubMed DOI PMC
MATLAB (2018). version 9.5.0 (R2018b). Natick, MA: The MathWorks Inc.
Mullen T., Kothe C., Chi Y. M., Ojeda A., Kerth T., Makeig S., et al. . (2013). “Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG,” in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Osaka: ), 2184–2187. 10.1109/EMBC.2013.6609968 PubMed DOI PMC
Olbrich S., Dinteren R. V., Arns M. (2015). Personalized medicine: review and perspectives of promising baseline EEG biomarkers in major depressive disorder and attention deficit hyperactivity disorder. Neuropsychobiology 72, 229–240. 10.1159/000437435 PubMed DOI
Plechawska-Wojcik M., Kaczorowska M., Zapala D. (2018). “The artifact subspace reconstruction (ASR) for EEG signal correction. a comparative study,” in International Conference on Information Systems Architecture and Technology (Cham: Springer; ), 125–135. 10.1007/978-3-319-99996-8_12 DOI
Samek W., Wiegand T., Mller K.-R. (2017). Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. arXiv:1708.08296. Available online at: https://arxiv.org/abs/1708.08296v1
Sejnowski T. J., Churchland P. S., Movshon J. A. (2014). Putting big data to good use in neuroscience. Nat. Neurosci. 17, 1440–1441. 10.1038/nn.3839 PubMed DOI PMC
Thibodeau R., Jorgensen R., Kim S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review. J. Abnorm. Psychol. 115, 715–729. 10.1037/0021-843X.115.4.715 PubMed DOI
van Putten M. J. A. M., Olbrich S., Arns M. (2018). Predicting sex from brain rhythms with deep learning. Sci. Rep. 8:3069. 10.1038/s41598-018-21495-7 PubMed DOI PMC
Vogt N. (2018). Machine learning in neuroscience. Nat. Methods 15:33 10.1038/nmeth.4549 DOI
Vu M.-A. T., Adal T., Ba D., Buzsáki G., Carlson D., Heller K., et al. . (2018). A shared vision for machine learning in neuroscience. J. Neurosci. 38, 1601–1607. 10.1523/JNEUROSCI.0508-17.2018 PubMed DOI PMC
Wade E. C., Iosifescu D. V. (2016). Using electroencephalography for treatment guidance in major depressive disorder. Biol. Psychiatry 1, 411–422. 10.1016/j.bpsc.2016.06.002 PubMed DOI
Whelan R., Garavan H. (2014). When optimism hurts: Inflated predictions in psychiatric neuroimaging. Biol. Psychiatry 75, 746–748. 10.1016/j.biopsych.2013.05.014 PubMed DOI
Widge A. S., Bilge M. T., Montana R., Chang W., Rodriguez C. I., Deckersbach T., et al. . (2018). Electroencephalographic biomarkers for treatment response prediction in major depressive illness: a meta-analysis. Am. J. Psychiatry 176, 44–56. 10.1176/appi.ajp.2018.17121358 PubMed DOI PMC
Woo C.-W., Chang L. J., Lindquist M. A., Wager T. D. (2017). Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20:365. 10.1038/nn.4478 PubMed DOI PMC
Yahata N., Kasai K., Kawato M. (2017). Computational neuroscience approach to biomarkers and treatments for mental disorders. Psychiatry Clin. Neurosci. 71, 215–237. 10.1111/pcn.12502 PubMed DOI