Efficiency of DNA Isolation Methods Based on Silica Columns and Magnetic Separation Tested for the Detection of Mycobacterium avium Subsp. Paratuberculosis in Milk and Faeces
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RO0518
Ministerstvo Zemědělství
QK1910082
Ministerstvo Zemědělství
PubMed
33198402
PubMed Central
PMC7697941
DOI
10.3390/ma13225112
PII: ma13225112
Knihovny.cz E-zdroje
- Klíčová slova
- DNA isolation, F57 PCR, Johne’s disease, Mycobacterium avium subsp. paratuberculosis, faeces, magnetic separation, milk, paratuberculosis, silica columns,
- Publikační typ
- časopisecké články MeSH
Timely and reliable detection of animals shedding Mycobacterium avium subsp. paratuberculosis (MAP) should help to effectively identify infected animals and limit infection transmission at early stages to ensure effective control of paratuberculosis. The aim of the study was to compare DNA extraction methods and evaluate isolation efficiency using milk and faecal samples artificially contaminated by MAP with a focus on modern instrumental automatic DNA isolation procedures based on magnetic separation. In parallel, an automatic and manual version of magnetic separation and two methods of faecal samples preparation were compared. Commercially available DNA isolation kits were evaluated, and the selected kits were used in a trial of automatic magnetic beads-based isolation and compared with the manual version of each kit. Detection of the single copy element F57 was performed by qPCR to quantify MAP and determine the isolation efficiency. The evaluated kits showed significant differences in DNA isolation efficiencies. The best results were observed with the silica column Blood and Tissue kit for milk and Zymo Research for faeces. The highest isolation efficiency for magnetic separation was achieved with MagMAX for both matrices. The magnetic separation and silica column isolation methods used in this study represent frequently used methods in mycobacterial diagnostics.
Zobrazit více v PubMed
Stabel J.R. Johne’s disease: A hidden threat. J. Dairy Sci. 1998;81:283–288. doi: 10.3168/jds.S0022-0302(98)75577-8. PubMed DOI
Olsen I., Sigurgardottir G., Djonne B. Paratuberculosis with special reference to cattle. A review. Vet. Q. 2002;24:12–28. doi: 10.1080/01652176.2002.9695120. PubMed DOI
Khare S., Ficht T.A., Santos R.L., Romano J., Ficht A.R., Zhang S., Grant I.R., Libal M., Hunter D., Adams L.G. Rapid and sensitive detection of Mycobacterium avium subsp. paratuberculosis in bovine milk and feces by a combination of immunomagnetic bead separation-conventional PCR and real-time PCR. J. Clin. Microbiol. 2004;42:1075–1081. doi: 10.1128/JCM.42.3.1075-1081.2004. PubMed DOI PMC
Whitlock R.H., Wells S.J., Sweeney R.W., Van Tiem J. ELISA and fecal culture for paratuberculosis (Johne’s disease): Sensitivity and specificity of each method. Vet. Microbiol. 2000;77:387–398. doi: 10.1016/S0378-1135(00)00324-2. PubMed DOI
Leite F.L., Stokes K.D., Robbe-Austerman S., Stabel J.R. Comparison of fecal DNA extraction kits for the detection of Mycobacterium avium subsp. paratuberculosis by polymerase chain reaction. J. Vet. Diagn. Investig. 2013;25:27–34. doi: 10.1177/1040638712466395. PubMed DOI
Whittington R.J., Sergeant E.S.G. Progress towards understanding the spread, detection and control of Mycobacterium avium subsp paratuberculosis in animal populations. Aust. Vet. J. 2001;79:267–278. doi: 10.1111/j.1751-0813.2001.tb11980.x. PubMed DOI
Donat K., Hahn N., Eisenberg T., Schlez K., Kohler H., Wolter W., Rohde M., Putzschel R., Roesler U., Failing K., et al. Within-herd prevalence thresholds for the detection of Mycobacterium avium subspecies paratuberculosis-positive dairy herds using boot swabs and liquid manure samples. Epidemiol. Infect. 2016;144:413–424. doi: 10.1017/S0950268815000977. PubMed DOI
Patterson S., Bond K., Green M., van Winden S., Guitian J. Mycobacterium avium paratuberculosis infection of calves—The impact of dam infection status. Prev. Vet. Med. 2019;181 doi: 10.1016/j.prevetmed.2019.02.009. PubMed DOI
Chiodini R.J., Chamberlin W.M., Sarosiek J., McCallum R.W. Crohn’s disease and the mycobacterioses: A quarter century later. Causation or simple association? Crit. Rev. Microbiol. 2012;38:52–93. doi: 10.3109/1040841X.2011.638273. PubMed DOI
Sweeney R.W., Whitlock R.H., Rosenberger A.E. Mycobacterium paratuberculosis cultured from milk and supramammary lymph nodes of infected asymptomatic cows. J. Clin. Microbiol. 1992;30:166–171. doi: 10.1128/JCM.30.1.166-171.1992. PubMed DOI PMC
Streeter R.N., Hoffsis G.F., Bech-Nielsen S., Shulaw W.P., Rings D.M. Isolation of Mycobacterium paratuberculosis from colostrum and milk of subclinically infected cows. Am. J. Vet. Res. 1995;56:1322–1324. PubMed
McAloon C.G., Roche S., Ritter C., Barkema H.W., Whyte P., More S.J., O’Grady L., Green M.J., Doherty M.L. A review of paratuberculosis in dairy herds—Part 2: On-farm control. Vet. J. 2019;246:54–58. doi: 10.1016/j.tvjl.2019.01.009. PubMed DOI
Grant I.R., Hitchings E.I., McCartney A., Ferguson F., Rowe M.T. Effect of Commercial-Scale High- Temperature, Short-Time Pasteurization on the Viability of Mycobacterium paratuberculosis in Naturally Infected Cows’ Milk. Appl. Environ. Microbiol. 2002;68:602. doi: 10.1128/AEM.68.2.602-607.2002. PubMed DOI PMC
Grant I.R., Ball H.J., Rowe M.T. Incidence of Mycobacterium paratuberculosis in Bulk Raw and Commercially Pasteurized Cows’ Milk from Approved Dairy Processing Establishments in the United Kingdom. Appl. Environ. Microbiol. 2002;68:2428. doi: 10.1128/AEM.68.5.2428-2435.2002. PubMed DOI PMC
Botsaris G., Swift B.M.C., Slana I., Liapi M., Christodoulou M., Hatzitofi M., Christodoulou V., Rees C.E.D. Detection of viable Mycobacterium avium subspecies paratuberculosis in powdered infant formula by phage-PCR and confirmed by culture. Int. J. Food Microbiol. 2016;216:91–94. doi: 10.1016/j.ijfoodmicro.2015.09.011. PubMed DOI
Kuenstner J.T., Naser S., Chamberlin W., Borody T., Graham D.Y., McNees A., Hermon-Taylor J., Hermon-Taylor A., Dow C.T., Thayer W., et al. The Consensus from the Mycobacterium avium ssp. paratuberculosis (MAP) Conference 2017. Front. Public Health. 2017;5:208. doi: 10.3389/fpubh.2017.00208. PubMed DOI PMC
Bögli-Stuber K., Kohler C., Seitert G., Glanemann B., Antognoli M.C., Salman M.D., Wittenbrink M.M., Wittwer M., Wassenaar T., Jemmi T., et al. Detection of Mycobacterium avium subspecies paratuberculosis in Swiss dairy cattle by real-time PCR and culture: A comparison of the two assays. J. Appl. Microbiol. 2005;99:587–597. doi: 10.1111/j.1365-2672.2005.02645.x. PubMed DOI
Douarre P.E., Cashman W., Buckley J., Coffey A., O’Mahony J.M. Isolation and detection of Mycobacterium avium subsp. paratuberculosis (MAP) from cattle in Ireland using both traditional culture and molecular based methods. Gut. Pathog. 2010;2:11. doi: 10.1186/1757-4749-2-11. PubMed DOI PMC
Kreader C.A. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein. Appl. Environ. Microbiol. 1996;62:1102. doi: 10.1128/AEM.62.3.1102-1106.1996. PubMed DOI PMC
Monteiro L., Bonnemaison D., Vekris A., Petry K.G., Bonnet J., Vidal R., Cabrita J., Mégraud F. Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. J. Clin. Microbiol. 1997;35:995. doi: 10.1128/JCM.35.4.995-998.1997. PubMed DOI PMC
Thornton C.G., Passen S. Inhibition of PCR amplification by phytic acid, and treatment of bovine fecal specimens with phytase to reduce inhibition. J. Microbiol. Methods. 2004;59:43–52. doi: 10.1016/j.mimet.2004.06.001. PubMed DOI
Lanigan M.D., Vaughan J.A., Shiell B.J., Beddome G.J., Michalski W.P. Mycobacterial proteome extraction: Comparison of disruption methods. Proteomics. 2004;4:1094–1100. doi: 10.1002/pmic.200300672. PubMed DOI
Grant I.R., Ball H.J., Rowe M.T. Isolation of Mycobacterium paratuberculosis from milk by immunomagnetic separation. Appl. Environ. Microbiol. 1998;64:3153–3158. doi: 10.1128/AEM.64.9.3153-3158.1998. PubMed DOI PMC
Foddai A., Elliott C.T., Grant I.R. Maximizing capture efficiency and specificity of magnetic separation for Mycobacterium avium subsp. paratuberculosis cells. Appl. Environ. Microbiol. 2010;76:7550–7558. doi: 10.1128/AEM.01432-10. PubMed DOI PMC
Stewart L.D., Foddai A., Elliott C.T., Grant I.R. Development of a novel phage-mediated immunoassay for the rapid detection of viable Mycobacterium avium subsp. paratuberculosis. J. Appl. Microbiol. 2013;115:808–817. doi: 10.1111/jam.12275. PubMed DOI
Husakova M., Dziedzinska R., Slana I. Magnetic Separation Methods for the Detection of Mycobacterium avium subsp. paratuberculosis in Various Types of Matrices: A Review. Biomed. Res. Int. 2017;2017:1–15. doi: 10.1155/2017/5869854. PubMed DOI PMC
Gülçin G., Çiğdem K.S., Eda Ö., Hasan İ., Güneş K., Ali T. Comparative DNA isolation behaviours of silica and polymer based sorbents in batch fashion: Monodisperse silica microspheres with bimodal pore size distribution as a new sorbent for DNA isolation. Artif. Cells Nanomed. Biotechnol. 2018;46:178–184. doi: 10.1080/21691401.2017.1304404. PubMed DOI
Kralik P., Slana I., Kralova A., Babak V., Whitlock R.H., Pavlik I. Development of a predictive model for detection of Mycobacterium avium subsp. paratuberculosis in faeces by quantitative real time PCR. Vet. Microbiol. 2011;149:133–138. doi: 10.1016/j.vetmic.2010.10.009. PubMed DOI
Slana I., Kralik P., Kralova A., Pavlik I. On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. Int. J. Food Microbiol. 2008;128:250–257. doi: 10.1016/j.ijfoodmicro.2008.08.013. PubMed DOI
Okwumabua O., Shull E., O’Connor M., Moua T.V., Danz T., Strelow K. Comparison of three methods for extraction of Mycobacterium avium subspecies paratuberculosis DNA for polymerase chain reaction from broth-based culture systems. J. Vet. Diagn. Investing. 2010;22:67–69. doi: 10.1177/104063871002200111. PubMed DOI
Plain K.M., Waldron A.M., Begg D.J., de Silva K., Purdie A.C., Whittington R.J. Efficient, Validated Method for Detection of Mycobacterial Growth in Liquid Culture Media by Use of Bead Beating, Magnetic-Particle- Based Nucleic Acid Isolation, and Quantitative PCR. J. Clin. Microbiol. 2015;53:1121–1128. doi: 10.1128/JCM.03521-14. PubMed DOI PMC
Herthnek D., Nielsen S.S., Lindberg A., Bölske G. A robust method for bacterial lysis and DNA purification to be used with real-time PCR for detection of Mycobacterium avium subsp. paratuberculosis in milk. J. Microbiol. Methods. 2008;75:335–340. doi: 10.1016/j.mimet.2008.07.009. PubMed DOI
Bickley J., Short J.K., McDowell D.G., Parkes H.C. Polymerase chain reaction (PCR) detection of Listeria monocytogenes in diluted milk and reversal of PCR inhibition caused by calcium ions. Lett. Appl. Microbiol. 1996;22:153–158. doi: 10.1111/j.1472-765X.1996.tb01131.x. PubMed DOI
Chui L.W., King R., Lu P., Manninen K., Sim J. Evaluation of four DNA extraction methods for the detection of Mycobacterium avium subsp. paratuberculosis by polymerase chain reaction. Diagn. Microbiol. Infect. Dis. 2004;48:39–45. doi: 10.1016/j.diagmicrobio.2003.08.007. PubMed DOI
Zimin A.V., Delcher A.L., Florea L., Kelley D.R., Schatz M.C., Hanrahan D.P.F., Pertea G., Tassell C.P.V.T., Yorke J.A., Salzberg S.L., et al. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009;10:R42. doi: 10.1186/gb-2009-10-4-r42. PubMed DOI PMC
Sting R., Hrubenja M., Mandl J., Seemann G., Salditt A., Waibel S. Detection of Mycobacterium avium subsp. paratuberculosis in faeces using different procedures of pre-treatment for real-time PCR in comparison to culture. Vet. J. 2014;199:138–142. doi: 10.1016/j.tvjl.2013.08.033. PubMed DOI