Magnetic Separation Methods for the Detection of Mycobacterium avium subsp. paratuberculosis in Various Types of Matrices: A Review

. 2017 ; 2017 () : 5869854. [epub] 20170531

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28642876

The main reasons to improve the detection of Mycobacterium avium subsp. paratuberculosis (MAP) are animal health and monitoring of MAP entering the food chain via meat, milk, and/or dairy products. Different approaches can be used for the detection of MAP, but the use of magnetic separation especially in conjunction with PCR as an end-point detection method has risen in past years. However, the extraction of DNA which is a crucial step prior to PCR detection can be complicated due to the presence of inhibitory substances. Magnetic separation methods involving either antibodies or peptides represent a powerful tool for selective separation of target bacteria from other nontarget microorganisms and inhibitory sample components. These methods enable the concentration of pathogens present in the initial matrix into smaller volume and facilitate the isolation of sufficient quantities of pure DNA. The purpose of this review was to summarize the methods based on the magnetic separation approach that are currently available for the detection of MAP in a broad range of matrices.

Zobrazit více v PubMed

Raizman E. A., Fetrow J. P., Wells S. J. Loss of income from cows shedding Mycobacterium avium subspecies paratuberculosis prior to calving compared with cows not shedding the organism on two Minnesota dairy farms. Journal of Dairy Science. 2009;92(10):4929–4936. doi: 10.3168/jds.2009-2133. PubMed DOI

Whittington R. J., Sergeant E. Progress towards understanding the spread, detection and control of Mycobacterium avium subsp paratuberculosis in animal populations. Australian Veterinary Journal. 2001;79(4):267–278. doi: 10.1111/j.1751-0813.2001.tb11980.x. PubMed DOI

Clarke C. J. The pathology and pathogenesis of paratuberculosis in ruminants and other species. Journal of Comparative Pathology. 1997;116(3):217–261. doi: 10.1016/S0021-9975(97)80001-1. PubMed DOI

USDA-APHIS, Veterinary Services, C.f.E.a.A. Health, Johne's Disease on U.S. Dairies, 1991–2007, 2008.

Gilmour N. J. The pathogenesis, diagnosis and control of Johne's disease. Veterinary Record. 1976;99(22):433–434. doi: 10.1136/vr.99.22.433. PubMed DOI

Gulliver E. L., Plain K. M., Begg D. J., Whittington R. J. Histopathological Characterization of Cutaneous Delayed-type Hypersensitivity and Correlations with Intestinal Pathology and Systemic Immune Responses in Sheep with Paratuberculosis. Journal of Comparative Pathology. 2015;153(2-3):67–80. doi: 10.1016/j.jcpa.2015.05.005. PubMed DOI

Nielsen S. S., Gronbak C., Agger J. F., Houe H. Maximum-likelihood estimation of sensitivity and specificity of ELIAs and faecal culture for diagnosis of paratuberculosis. Preventive Veterinary Medicine. 2002;53(3):191–204. doi: 10.1016/S0167-5877(01)00280-X. PubMed DOI

Begg D. J., de Silva K., Plain K. M., Purdie A. C., Dhand N., Whittington R. J. Specific faecal antibody responses in sheep infected with Mycobacterium avium subspecies paratuberculosis. Veterinary Immunology and Immunopathology. 2015;166(3-4):125–131. doi: 10.1016/j.vetimm.2015.06.011. PubMed DOI

Monteiro L., Bonnemaison D., Vekris A., et al. Complex polysaccharides as PCR inhibitors in feces: Helicobacter pylori model. Journal of Clinical Microbiology. 1997;35(4):995–998. PubMed PMC

Thornton C. G., Passen S. Inhibition of PCR amplification by phytic acid, and treatment of bovine fecal specimens with phytase to reduce inhibition. Journal of Microbiological Methods. 2004;59(1):43–52. doi: 10.1016/j.mimet.2004.06.001. PubMed DOI

Sevilla I. A., Garrido J. M., Molina E., et al. Development and evaluation of a novel multicopy-element-targeting triplex PCR for detection of Mycobacterium avium subsp. paratuberculosis in feces. Applied and Environmental Microbiology. 2014;80(12):3757–3768. doi: 10.1128/AEM.01026-14. PubMed DOI PMC

Slana I., Paolicchi F., Janstova B., Navratilova P., Pavlik I. Detection methods for Mycobacterium avium subsp. paratuberculosis in milk and milk products: a review. Veterinarni Medicina. 2008;53:283–306.

Grant I. R., Pope C. M., O'Riordan L. M., Ball H. J., Rowe M. T. Improved detection of Mycobacterium avium subsp. paratuberculosis in milk by immunomagnetic PCR. Veterinary Microbiology. 2000;77(3-4):369–378. doi: 10.1016/S0378-1135(00)00322-9. PubMed DOI

Leite F. L., Stokes K. D., Robbe-Austerman S., Stabel J. R. Comparison of fecal DNA extraction kits for the detection of Mycobacterium avium subsp. paratuberculosis by polymerase chain reaction. Journal of Veterinary Diagnostic Investigation. 2013;25(1):27–34. doi: 10.1177/1040638712466395. PubMed DOI

Slana I., Kralik P., Kralova A., Pavlik I. On-farm spread of Mycobacterium avium subsp. paratuberculosis in raw milk studied by IS900 and F57 competitive real time quantitative PCR and culture examination. International Journal of Food Microbiology. 2008;128(2):250–257. doi: 10.1016/j.ijfoodmicro.2008.08.013. PubMed DOI

Ellingson J. L. E., Bolin C. A., Stabel J. R. Identification of a gene unique to Mycobacterium avium subspecies paratuberculosis and application to diagnosis of paratuberculosis. Molecular and Cellular Probes. 1998;12(3):133–142. doi: 10.1006/mcpr.1998.0167. PubMed DOI

Stewart L. D., Foddai A., Elliott C. T., Grant I. R. Development of a novel phage-mediated immunoassay for the rapid detection of viable Mycobacterium avium subsp. paratuberculosis. Journal of Applied Microbiology. 2013;115(3):808–817. doi: 10.1111/jam.12275. PubMed DOI

Botsaris G., Liapi M., Kakogiannis C., Dodd C. E. R., Rees C. E. D. Detection of Mycobacterium avium subsp. paratuberculosis in bulk tank milk by combined phage-PCR assay: Evidence that plaque number is a good predictor of MAP. International Journal of Food Microbiology. 2013;164(1):76–80. doi: 10.1016/j.ijfoodmicro.2013.03.023. PubMed DOI

Foddai A., Strain S., Whitlock R. H., Elliott C. T., Grant I. R. Application of a peptide-mediated magnetic separation-phage assay for detection of viable Mycobacterium avium subsp. paratuberculosis to bovine bulk tank milk and feces samples. Journal of Clinical Microbiology. 2011;49(5):2017–2019. doi: 10.1128/JCM.00429-11. PubMed DOI PMC

Nielsen S. S. Transitions in diagnostic tests used for detection of Mycobacterium avium subsp. paratuberculosis infections in cattle. Veterinary Microbiology. 2008;132(3-4):274–282. doi: 10.1016/j.vetmic.2008.05.018. PubMed DOI

Stabel J. R. Transitions in immune responses to Mycobacterium paratuberculosis. Veterinary Microbiology. 2000;77(3-4):465–473. doi: 10.1016/S0378-1135(00)00331-X. PubMed DOI

Burrells C., Clarke C. J., Colston A., et al. Interferon-gamma and interleukin-2 release by lymphocytes derived from the blood, mesenteric lymph nodes and intestines of normal sheep and those affected with paratuberculosis (Johne's disease) Veterinary Immunology and Immunopathology. 1999;68(2-4):139–148. doi: 10.1016/S0165-2427(99)00022-7. PubMed DOI

Bannantine J. P., Baechler E., Zhang Q., Li L., Kapur V. Genome scale comparison of Mycobacterium avium subsp. paratuberculosis with Mycobacterium avium subsp. avium reveals potential diagnostic sequences. Journal of Clinical Microbiology. 2002;40(4):1303–1310. doi: 10.1128/JCM.40.4.1303-1310.2002. PubMed DOI PMC

Foddai A., Elliott C. T., Grant I. R. Maximizing capture efficiency and specificity of magnetic separation for Mycobacterium avium subsp. paratuberculosis cells. Applied and Environmental Microbiology. 2010;76(22):7550–7558. doi: 10.1128/AEM.01432-10. PubMed DOI PMC

Hsih H.-Y., Tsen H.-Y. Combination of immunomagnetic separation and polymerase chain reaction for the simultaneous detection of Listeria monocytogenes and Salmonella spp. in food samples. Journal of Food Protection. 2001;64(11):1744–1750. doi: 10.4315/0362-028X-64.11.1744. PubMed DOI

Rijpens N., Herman L., Vereecken F., Jannes G., De Smedt J., De Zutter L. Rapid detection of stressed Salmonella spp. in dairy and egg products using immunomagnetic separation and PCR. International Journal of Food Microbiology. 1999;46(1):37–44. doi: 10.1016/S0168-1605(98)00171-8. PubMed DOI

Karch H., Janetzki-Mittmann C., Aleksic S., Datz M. Isolation of enterohemorrhagic Escherichia coli O157 strains from patients with hemolytic-uremic syndrome by using immunomagnetic separation, DNA-based methods, and direct culture. Journal of Clinical Microbiology. 1996;34:516–519. PubMed PMC

Possé B., De Zutter L., Heyndrickx M., Herman L. Quantitative isolation efficiency of O26, O103, O111, O145 and O157 STEC serotypes from artificially contaminated food and cattle faeces samples using a new isolation protocol. Journal of Applied Microbiology. 2008;105(1):227–235. doi: 10.1111/j.1365-2672.2008.03739.x. PubMed DOI

Grant I. R., Ball H. J., Rowe M. T. Isolation of Mycobacterium paratuberculosis from milk by immunomagnetic separation. Applied and Environmental Microbiology. 1998;64:3153–3158. PubMed PMC

Metzger-Boddien C., Khaschabi D., Schönbauer M., Boddien S., Schlederer T., Kehle J. Automated high-throughput immunomagnetic separation-PCR for detection of Mycobacterium avium subsp. paratuberculosis in bovine milk. International Journal of Food Microbiology. 2006;110(3):201–208. doi: 10.1016/j.ijfoodmicro.2006.01.042. PubMed DOI

O'Brien L. M., Stewart L. D., Strain S. A. J., Grant I. R. Novel monoclonal antibody and peptide binders for Mycobacterium avium subsp. paratuberculosis and their application for magnetic separation. PLoS ONE. 2016;11(1) doi: 10.1371/journal.pone.0147870.e0147870 PubMed DOI PMC

Stratmann J., Strommenger B., Stevenson K., Gerlach G.-F. Development of a peptide-mediated capture PCR for detection of Mycobacterium avium subsp. paratuberculosis in milk. Journal of Clinical Microbiology. 2002;40(11):4244–4250. doi: 10.1128/JCM.40.11.4244-4250.2002. PubMed DOI PMC

Stratmann J., Dohmann K., Heinzmann J., Gerlach G.-F. Peptide aMptD-mediated capture PCR for detection of Mycobacterium avium subsp. paratuberculosis in bulk milk samples. Applied and Environmental Microbiology. 2006;72(8):5150–5158. doi: 10.1128/AEM.00590-06. PubMed DOI PMC

Djønne B., Jensen M. R., Grant I. R., Holstad G. Detection by immunomagnetic PCR of Mycobacterium avium subsp. paratuberculosis in milk from dairy goats in Norway. Veterinary Microbiology. 2003;92(1-2):135–143. doi: 10.1016/S0378-1135(02)00355-3. PubMed DOI

Khare S., Ficht T. A., Santos R. L., et al. Rapid and sensitive detection of Mycobacterium avium subsp. paratuberculosis in bovine milk and feces by a combination of immunomagnetic bead separation-conventional PCR and real-time PCR. Journal of Clinical Microbiology. 2004;42(3):1075–1081. doi: 10.1128/JCM.42.3.1075-1081.2004. PubMed DOI PMC

Gilardoni L. R., Fernández B., Morsella C., et al. Mycobacterium paratuberculosis detection in cow’s milk in Argentina by immunomagnetic separation-PCR. Brazilian Journal of Microbiology. 2016;47(2):506–512. doi: 10.1016/j.bjm.2016.01.013. PubMed DOI PMC

Salgado M., Steuer P., Troncoso E., Collins M. T. Evaluation of PMS-PCR technology for detection of Mycobacterium avium subsp. paratuberculosis directly from bovine fecal specimens. Veterinary Microbiology. 2013;167(3-4):725–728. doi: 10.1016/j.vetmic.2013.09.009. PubMed DOI

Ricchi M., De Cicco C., Kralik P., et al. Evaluation of viable Mycobacterium avium subsp. paratuberculosis in milk using peptide-mediated separation and Propidium Monoazide qPCR. FEMS Microbiology Letters. 2014;356(1):127–133. doi: 10.1111/1574-6968.12480. PubMed DOI

Swift B. M. C., Denton E. J., Mahendran S. A., Huxley J. N., Rees C. E. D. Development of a rapid phage-based method for the detection of viable Mycobacterium avium subsp. paratuberculosis in blood within 48 h. Journal of Microbiological Methods. 2013;94(3):175–179. doi: 10.1016/j.mimet.2013.06.015. PubMed DOI PMC

Stephan R., Schumacher S., Tasara T., Grant I. R. Prevalence of Mycobacterium avium subspecies paratuberculosis in swiss raw milk cheeses collected at the retail level. Journal of Dairy Science. 2007;90(8):3590–3595. doi: 10.3168/jds.2007-0015. PubMed DOI

Donaghy J. A., Rowe M. T., Rademaker J. L. W., et al. An inter-laboratory ring trial for the detection and isolation of Mycobacterium avium subsp. paratuberculosis from raw milk artificially contaminated with naturally infected faeces. Food Microbiology. 2008;25(1):128–135. doi: 10.1016/j.fm.2007.06.007. PubMed DOI

Herthnek D., Nielsen S. S., Lindberg A., Bölske G. A robust method for bacterial lysis and DNA purification to be used with real-time PCR for detection of Mycobacterium avium subsp. paratuberculosis in milk. Journal of Microbiological Methods. 2008;75(2):335–340. doi: 10.1016/j.mimet.2008.07.009. PubMed DOI

Okwumabua O., Shull E., O'Connor M., Moua T. V., Danz T., Strelow K. Comparison of three methods for extraction of Mycobacterium avium subspecies paratuberculosis dna for polymerase chain reaction from broth-based culture systems. Journal of Veterinary Diagnostic Investigation. 2010;22(1):67–69. doi: 10.1177/104063871002200111. PubMed DOI

Plain K. M., Waldron A. M., Begg D. J., De Silva K., Purdie A. C., Whittington R. J. Efficient, validated method for detection of mycobacterial growth in liquid culture media by use of bead beating, magnetic-particle-based nucleic acid isolation, and quantitative PCR. Journal of Clinical Microbiology. 2015;53(4):1121–1128. doi: 10.1128/JCM.03521-14. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace