Detection of cell-free foetal DNA fraction in female-foetus bearing pregnancies using X-chromosomal insertion/deletion polymorphisms examined by digital droplet PCR
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu kazuistiky, časopisecké články, práce podpořená grantem
PubMed
33208834
PubMed Central
PMC7676229
DOI
10.1038/s41598-020-77084-0
PII: 10.1038/s41598-020-77084-0
Knihovny.cz E-zdroje
- MeSH
- analýza určování pohlaví metody MeSH
- dospělí MeSH
- genetické testování MeSH
- lidé MeSH
- lidské chromozomy X genetika MeSH
- mutace INDEL * MeSH
- plod chemie metabolismus MeSH
- polymerázová řetězová reakce metody MeSH
- polymorfismus genetický * MeSH
- prenatální diagnóza metody MeSH
- těhotenství MeSH
- volné cirkulující nukleové kyseliny analýza genetika MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- volné cirkulující nukleové kyseliny MeSH
In families with X-linked recessive diseases, foetal sex is determined prenatally by detection of Y-chromosomal sequences in cell-free foetal DNA (cffDNA) in maternal plasma. The same procedure is used to confirm the cffDNA presence during non-invasive prenatal RhD incompatibility testing but there are no generally accepted markers for the detection of cffDNA fraction in female-foetus bearing pregnancies. We present a methodology allowing the detection of paternal X-chromosomal alleles on maternal background and the confirmation of female sex of the foetus by positive amplification signals. Using digital droplet PCR (ddPCR) we examined X-chromosomal INDEL (insertion/deletion) polymorphisms: rs2307932, rs16397, rs16637, rs3048996, rs16680 in buccal swabs of 50 females to obtain the population data. For all INDELs, we determined the limits of detection for each ddPCR assay. We examined the cffDNA from 63 pregnant women bearing Y-chromosome negative foetuses. The analysis with this set of INDELs led to informative results in 66.67% of examined female-foetus bearing pregnancies. Although the population data predicted higher informativity (74%) we provided the proof of principle of this methodology. We successfully applied this methodology in prenatal diagnostics in a family with Wiscott-Aldrich syndrome and in pregnancies tested for the risk of RhD incompatibility.
Zobrazit více v PubMed
Lo YMD, et al. Presence of foetal DNA in maternal plasma and serum. Lancet. 1997;350:485–487. doi: 10.1016/S0140-6736(97)02174-0. PubMed DOI
Akolekar R, Beta J, Picciarelli G, Ogilvie C, D’Antonio F. Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2015;45:16–26. doi: 10.1002/uog.14636. PubMed DOI
Flori E, et al. Circulating cell-free foetal DNA in maternal serum appears to originate from cyto- and syncytio-trophoblastic cells. Case report. Hum. Reprod. 2004;19:723–772. doi: 10.1093/humrep/deh117. PubMed DOI
Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR. Noninvasive diagnosis of foetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc. Natl. Acad. Sci. USA. 2008;105:16266–16271. doi: 10.1073/pnas.0808319105. PubMed DOI PMC
Lo YM, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci. Transl. Med. 2010;2:61–91. doi: 10.1126/scitransmed.3001720. PubMed DOI
Horinek A, et al. Cell-free foetal DNA in maternal plasma during physiological single male pregnancies: methodology issues and kinetics. Foetal. Diagn. Ther. 2008;24:15–21. doi: 10.1159/000132400. PubMed DOI
Drury S, Hill M, Chitty LS. Cell-free foetal DNA testing for prenatal diagnosis. Adv. Clin. Chem. 2016;76:1–35. doi: 10.1016/bs.acc.2016.05.004. PubMed DOI
Zhou Y, et al. Effects of maternal and foetal characteristics on cell-free foetal DNA fraction in maternal plasma. Reprod. Sci. 2015;22:1429–1435. doi: 10.1177/1933719115584445. PubMed DOI
Vora NL, et al. A multifactorial relationship exists between total circulating cell-free DNA levels and maternal BMI. Prenat. Diagn. 2012;32:912–914. doi: 10.1002/pd.3919. PubMed DOI PMC
Attilakos G, et al. Quantification of free foetal DNA in multiple pregnancies and relationship with chorionicity. Prenat. Diagn. 2011;31:967–972. doi: 10.1002/pd.2814. PubMed DOI
Lefkowitz RB, et al. Clinical validation of a noninvasive prenatal test for genomewide detection of foetal copy number variants. Am. J. Obstet. Gynecol. 2016;215(227):e1–227.e16. PubMed
Takoudes T, Hamar B. Performance of non-invasive prenatal testing when foetal cell-free DNA is absent. Ultrasound Obstet. Gynecol. 2015;45:112. doi: 10.1002/uog.14715. PubMed DOI PMC
Svobodova I, et al. Performance of droplet digital PCR in non-invasive foetal RHD genotyping—comparison with a routine real-time PCR based approach. PLoS ONE. 2015;10:e0142572. doi: 10.1371/journal.pone.0142572. PubMed DOI PMC
Orhant L, et al. Droplet Digital PCR combined with minisequencing, a new approach to analyze foetal DNA from maternal blood: application to the non-invasive prenatal diagnosis of achondroplasia. Prenat. Diagn. 2016;36:397–406. doi: 10.1002/pd.4790. PubMed DOI
Meaney C, Norbury G. Noninvasive prenatal diagnosis of early onset primary dystonia I in maternal plasma. Prenat. Diagn. 2009;29:1218–1221. doi: 10.1002/pd.2385. PubMed DOI
Gruber A, et al. Non-invasive prenatal diagnosis of paternally inherited disorders from maternal plasma: detection of NF1 and CFTR mutations using droplet digital PCR. Clin. Chem. Lab. Med. 2018;56:728–738. doi: 10.1515/cclm-2017-0689. PubMed DOI
Byrou S, et al. Fast temperature-gradient COLD PCR for the enrichment of the paternally inherited SNPs in cell free foetal DNA; an application to non-invasive prenatal diagnosis of β-thalassaemia. PLoS ONE. 2018;13:e200348. doi: 10.1371/journal.pone.0200348. PubMed DOI PMC
D'Aversa E, et al. Non-invasive foetal sex diagnosis in plasma of early weeks pregnants using droplet digital PCR. Mol. Med. 2018;24:14. doi: 10.1186/s10020-018-0016-7. PubMed DOI PMC
Ho SS, et al. Application of real-time PCR of sex-independent insertion-deletion polymorphisms to determine foetal sex using cell-free foetal DNA from maternal plasma. Clin. Chem. Lab. Med. 2015;53:1189–1195. PubMed
Straver R, Oudejans CB, Sistermans EA, Reinders MJ. Calculating the foetal fraction for noninvasive prenatal testing based on genome-wide nucleosome profiles. Prenat. Diagn. 2016;36:614–621. doi: 10.1002/pd.4816. PubMed DOI PMC
Peng XL, Jiang P. Bioinformatics approaches for foetal DNA fraction estimation in noninvasive prenatal testing. Int. J. Mol. Sci. 2017 doi: 10.3390/ijms18020453. PubMed DOI PMC
Chan KC, et al. Hypermethylated RASSF1A in maternal plasma: a universal foetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin. Chem. 2006;52:2211–2218. doi: 10.1373/clinchem.2006.074997. PubMed DOI
Nygren AOH, et al. Quantification of foetal DNA by use of methylation-based DNA discrimination. Clin. Chem. 2010;56:1627–1635. doi: 10.1373/clinchem.2010.146290. PubMed DOI
Lim JH, et al. Effective foetal epigenetic biomarkers for noninvasive foetal trisomy 21 detections. Foetal. Diagn. Ther. 2019;46:133–138. doi: 10.1159/000494054. PubMed DOI
Doescher A, Petershofen EK, Wagner FF, Schunter M, Müller TH. Evaluation of single-nucleotide polymorphisms as internal controls in prenatal diagnosis of foetal blood groups. Transfusion. 2013;53:353–362. doi: 10.1111/j.1537-2995.2012.03738.x. PubMed DOI
Guissart C, et al. Non-invasive prenatal diagnosis of monogenic disorders: an optimized protocol using MEMO qPCR with miniSTR as internal control. Clin. Chem. Lab. Med. 2015;53:205–215. doi: 10.1515/cclm-2014-0501. PubMed DOI
Page-Christiaens GC, Bossers B, van der Schoot CE, de Haas M. Use of bi-allelic insertion/deletion polymorphisms as a positive control for foetal genotyping in maternal blood: first clinical experience. Ann. N. Y. Acad. Sci. 2006;1075:123–129. doi: 10.1196/annals.1368.016. PubMed DOI
Chitty LS, et al. Diagnostic accuracy of routine antenatal determination of foetal RHD status across gestation: population based cohort study. BMJ. 2014;349:5243. doi: 10.1136/bmj.g5243. PubMed DOI PMC
Yang H, et al. High-throughput, non-invasive prenatal testing for foetal rhesus D status in RhD-negative women: a systematic review and meta-analysis. BMC Med. 2019;17:37–46. doi: 10.1186/s12916-019-1254-4. PubMed DOI PMC
Barrett AN, et al. Measurement of foetal fraction in cell-free DNA from maternal plasma using a panel of insertion/deletion polymorphisms. PLoS ONE. 2017;12:e0186771. doi: 10.1371/journal.pone.0186771. PubMed DOI PMC
Freitas NSC, et al. X-linked insertion/deletion polymorphisms: forensic applications of a 33-markers panel. Int. J. Legal. Med. 2010;124:589–593. doi: 10.1007/s00414-010-0441-9. PubMed DOI
Edelmann J, Kohl M, Dressler J, Hoffmann A. X-chromosomal 21-indel marker panel in German and Baltic populations. Int. J. Legal. Med. 2016;130:357–360. doi: 10.1007/s00414-015-1221-3. PubMed DOI
Pereira R, et al. A method for the analysis of 32 X chromosome insertion deletion polymorphisms in a single PCR. Int. J. Legal. Med. 2012;126:97–105. doi: 10.1007/s00414-011-0593-2. PubMed DOI
Massaad MJ, Ramesh N, Geha RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann. N. Y. Acad. Sci. 2013;1285:26–43. doi: 10.1111/nyas.12049. PubMed DOI
Pinheiro L, Emslie KR. Basic concepts and validation of digital PCR measurements. In: Karlin-Neumann G, Bizouarn F, editors. Digital PCR Methods and Protocols, Methods in Molecular Biology. Berlin: Springer; 2018. pp. 11–24. PubMed
Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin. Biochem. Rev. 2008;29:S49–S52. PubMed PMC
Lavín Á, et al. On the determination of uncertainty and limit of detection in label-free biosensors. Sensors (Basel, Switzerland). 2018;18:2038. doi: 10.3390/s18072038. PubMed DOI PMC
Milbury CA, et al. Determining lower limits of detection of digital PCR assays for cancer-related gene mutations. Biomol. Detect Quantif. 2014;1:8–22. doi: 10.1016/j.bdq.2014.08.001. PubMed DOI PMC