Phytoremediation potential of Miscanthus sinensis And. in organochlorine pesticides contaminated soil amended by Tween 20 and Activated carbon

. 2021 Apr ; 28 (13) : 16092-16106. [epub] 20201127

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33245538

Grantová podpora
LM2018124 Ministerstvo Školství, Mládeže a Tělovýchovy
BR05236379 Ministry of Education and Science of the Republic of Kazakhstan
AP05131473 Ministry of Education and Science of the Republic of Kazakhstan
G4687 North Atlantic Treaty Organization

Odkazy

PubMed 33245538
DOI 10.1007/s11356-020-11609-y
PII: 10.1007/s11356-020-11609-y
Knihovny.cz E-zdroje

The organochlorine pesticides (OCPs) have raised concerns about being persistent and toxic to the environment. Phytoremediation techniques show promise for the revitalization of polluted soils. The current study focused on optimizing the phytoremediation potential of Miscanthus sinensis And. (M. sinensis), second-generation energy crop, by exploring two soil amendments: Tween 20 and activated carbon (AC). The results showed that when M. sinensis grew in OCP-polluted soil without amendments to it, the wide range of compounds, i.e., α-HCH, β-HCH, γ-HCH, 2.4-DDD, 4.4-DDE, 4.4-DDD, 4.4-DDT, aldrin, dieldrin, and endrin, was accumulated by the plant. The introduction of soil amendments improved the growth parameters of M. sinensis. The adding of Tween 20 enhanced the absorption and transmigration to aboveground biomass for some OCPs; i.e., for γ-HCH, the increase was by 1.2, for 4.4-DDE by 8.7 times; this effect was due to the reduction of the hydrophobicity which made pesticides more bioavailable for the plant. The adding of AC reduced OCPs absorption by plants, consequently, for γ-HCH by 2.1 times, 4.4-DDD by 20.5 times, 4.4-DDE by 1.4 times, 4.4-DDT by 8 times, α-HCH was not adsorbed at all, and decreased the translocation to the aboveground biomass: for 4.4-DDD by 31 times, 4.4-DDE by 2.8 times, and γ-HCH by 2 times; this effect was due to the decrease in the bioavailability of pesticides. Overall, the amendment of OCP-polluted soil by Tween 20 speeds the remediation process, and incorporation of AC permitted to produce the relatively clean biomass for energy.

Zobrazit více v PubMed

Abou Jaoude L, Castaldi P, Nassif N, Pinna MV, Garau G (2020) Biochar and compost as gentle remediation options for the recovery of trace elements-contaminated soils. Sci Total Environ 711:134511. https://doi.org/10.1016/j.scitotenv.2019.134511 DOI

Addinsoft (2020) XLSTAT statistical and data analysis solution. USA, New York https://www.xlstat.com

Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere. 117:232–242. https://doi.org/10.1016/j.chemosphere.2014.06.078 DOI

Agbeve SK, Carboo D, Duker-Eshun G, Afful S, Ofosu P (2013) Burden of organochlorine pesticide residues in the root of Cryptolepis sanguinolenta, antimalarial plant used in traditional medicine in Ghana. Eur Chem Bull 2:936–941. https://doi.org/10.17628/ECB.2013.2.936-941 DOI

Agnello AC, Huguenot D, Van Hullebusch ED, Esposito G (2014) Enhanced phytoremediation: a review of low molecular weight organic acids and surfactants used as amendments. Crit Rev Environ Sci Technol 44:2531–2576. https://doi.org/10.1080/10643389.2013.829764 DOI

Aislabie J, Lloyd-Jones G (1995) A review of bacterial degradation of pesticides. Aust J Soil Res 33:925–942. https://doi.org/10.1071/SR9950925 DOI

Alcántara MT, Gómez J, Pazos M, Sanromán MA (2009) PAHs soil decontamination in two steps: desorption and electrochemical treatment. J Hazard Mater 166:462–468. https://doi.org/10.1016/j.jhazmat.2008.11.050 DOI

An CJ, Huang GH, Wei J, Yu H (2011) Effect of short-chain organic acids on the enhanced desorption of phenanthrene by rhamnolipid biosurfactant in soil-water environment. Water Res 45:5501–5510. https://doi.org/10.1016/j.watres.2011.08.011 DOI

Andersen A, Kasperlik-Zaluska AA, Warren DJ (1999) Determination of mitotane (o,p’-DDD) and its metabolites o,p’-DDA and o,p’-DDE in plasma by high-performance liquid chromatography. Ther Drug Monit 21:355–359. https://doi.org/10.1097/00007691-199906000-00020 DOI

Annesini MC, Memoli A, Petralito S (2000) Kinetics of surfactant-induced release from liposomes: a time-dependent permeability model. J Membr Sci 180:121–131. https://doi.org/10.1016/S0376-7388(00)00524-X DOI

Antonkiewicz J, Kołodziej B, Bielińska EJ (2016) The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Environ Sci Pollut Res 23:9505–9517. https://doi.org/10.1007/s11356-016-6175-6 DOI

Arnoult S, Obeuf A, Béthencourt L, Mansard MC, Brancourt-Hulmel M (2015) Miscanthus clones for cellulosic bioethanol production: relationships between biomass production, biomass production components, and biomass chemical composition. Ind Crop Prod 63:316–328. https://doi.org/10.1016/j.indcrop.2014.10.011 DOI

Astanina L, Dylevskaya S, Korneeva Z (2013) Implementation of the Stockholm, Rotterdam and Basel Conventions in Kazakhstan (overview), Almaty

Babu AG, Shea PJ, Sudhakar D, Jung IB, Oh BT (2015) Potential use of Pseudomonas koreensis AGB-1 in association with Miscanthus sinensis to remediate heavy metal(loid)-contaminated mining site soil. J Environ Manag 151:160–166. https://doi.org/10.1016/j.jenvman.2014.12.045 DOI

Bang J, Kamala-Kannan S, Lee KJ, Cho M, Kim CH, Kim YJ, Bae JH, Kim KH, Myung H, Oh BT (2015) Phytoremediation of heavy metals in contaminated water and soil using Miscanthus sp. Goedae-Uksae 1. Int J Phytoremediation 17:515–520. https://doi.org/10.1080/15226514.2013.862209 DOI

Barbosa B, Boléo S, Sidella S, Costa J, Duarte MP, Mendes B, Cosentino SL, Fernando AL (2015) Phytoremediation of heavy metal-contaminated soils using the perennial energy crops Miscanthus spp. and Arundo donax L. Bioenergy Res 8:1500–1511. https://doi.org/10.1007/s12155-015-9688-9 DOI

Beal JL, Christensen BV, Colby AB (1954) The effect of selected chemicals on the alkaloidal yield of Datura tatula Linné. J Am Pharm Assoc (Baltim) 43:282–287. https://doi.org/10.1002/jps.3030430509 DOI

Beesley L, Moreno-Jiménez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159:3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023 DOI

Caslin B, Finnan J, Easson L (2010) Miscanthus best practice guidelines, Agriculture and Food Development Authority, Teagasc, and Agri-Food and Bioscience Institute ISBN: 1-84170-574-8

Chai Y, Currie RJ, Davis JW, Wilken M, Martin GD, Fishman VN, Ghosh U (2012) Effectiveness of activated carbon and biochar in reducing the availability of polychlorinated dibenzo-p-dioxins/dibenzofurans in soils. Environ Sci Technol 46:1035–1043. https://doi.org/10.1021/es2029697 DOI

Choi Y, Cho YM, Luthy RG (2014) In situ sequestration of hydrophobic organic contaminants in sediments under stagnant contact with activated carbon. 1. Column studies. Environ Sci Technol 48:1835–1842. https://doi.org/10.1021/es403335g DOI

Chorom M, Parnian A, Jaafarzadeh N (2012) Nickel removal by the aquatic plant (Ceratophyllum demersum L.). Int J Environ Sci Dev 3:372. https://doi.org/10.7763/ijesd.2012.v3.250 DOI

CITI (1992) Chemicals Inspection & Testing Institute. Biodegradation and bioaccumulation data of existing chemicals based on the CSCL Japan, Japan Chemical Industry Ecology - Toxicology and Information Center ISBN: 4-89074-101-1

Stockholm Convention (2019) Stockholm Convention - Home page [online] http://chm.pops.int/

Cope-Selby N, Cookson A, Squance M, Donnison I, Flavell R, Farrar K (2017) Endophytic bacteria in Miscanthus seed: implications for germination, vertical inheritance of endophytes, plant evolution and breeding. GCB Bioenergy 9:57–77. https://doi.org/10.1111/gcbb.12364 DOI

Crommentuijn T, Sijm D, De Bruijn J, Van Leeuwen K, Van de Plassche E (2000) Maximum permissible and negligible concentrations for some organic substances and pesticides. J Environ Manag 58:297–312. https://doi.org/10.1006/jema.2000.0334 DOI

Danielewicz D, Dybka-Stępień K, Surma-Ślusarska B (2018) Processing of Miscanthus × giganteus stalks into various soda and Kraft pulps. Part I: chemical composition, types of cells and pulping effects. Cellulose 25:6731–6744. https://doi.org/10.1007/s10570-018-2023-9 DOI

De Bruijn J, Busser F, Seinen W, Hermens J (1989) Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the “slow-stirring” method. Environ Toxicol Chem 8:499–512. https://doi.org/10.1002/etc.5620080607 DOI

Elzobair KA, Stromberger ME, Ippolito JA (2016) Stabilizing effect of biochar on soil extracellular enzymes after a denaturing stress. Chemosphere 142:114–119. https://doi.org/10.1016/j.chemosphere.2015.03.018 DOI

EPA (2003) Estimation Program Interface (EPI) Suite, version 4.10, Office of Pollution Prevention & Toxics (OPPT) and Syracuse Research Corporation

FAO (2014a) Obsolete Pesticides: Inventory and environmental risk assessment [online]. http://www.fao.org/agriculture/crops/obsolete-pesticides/how-deal/inventory-risk/en

FAO (2014b) World Reference Base for Soil Resources 2014: International soil classification systems for naming soils and creating legends for soil maps (Update 2015), World Soil Resources Reports No 106. ISBN: 978-92-5-108369-7

Gavrilenko VF, Ladygina ME, Khandobina LM (1975) Large practical workshop on plant physiology. Photosynthesis breathing., Moscow: High School

Germaine KJ, Otieno N, Culhane J, Menton C, Keogh E, Brazil D, Dowling DN (2012) Microbial communities associated with the bio-energy plant Miscanthus, in: 28th New Phytologists Symposium: Functions and Ecology of the Plant Microbiome. New Phytologist Organisation

Gobas FAPC, Kelly BC, Arnot JA (2003) Quantitative structure activity relationships for predicting the bioaccumulation of POPs in terrestrial food-webs. QSAR Comb Sci 22:329–336. https://doi.org/10.1002/qsar.200390022 DOI

Gonzalez M, Miglioranza KSB, Aizpún JE, Isla FI, Peña A (2010) Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia). Chemosphere 81:351–358. https://doi.org/10.1016/j.chemosphere.2010.07.021 DOI

GOST 17.4.4.02–84 (1984) Protection of nature. Soil. Methods for sampling and preparation of soil for chemical, bacteriological, helminthological analysis

Hansch C, Leo A, Hoekman DH (1995) Exploring QSAR: fundamentals and applications in chemistry and biology 557. American Chemical Society Washington, DC

Howard PH, Meylan WM (1997) Prediction of physical properties, transport, and degradation for environmental fate and exposure assessments. Quant Struct Relationships Environ Sci 7:185–205

HSDB (2009) Bank, hazardous substances data. Available in: http://toxnet.nlm.nih.gov/cgibin/sis/htmlgen? HSDB. Access Oct.

IPNI (2019) International Plant Names Index. The International Plant Names Index Collaborators. Checklist dataset https://doi.org/10.15468/uhllmw accessed via GBIF.org on 2020-10-06

Khalid S, Shahid M, Murtaza B, Bibi I, Asif Naeem M, Niazi NK (2020) A critical review of different factors governing the fate of pesticides in soil under biochar application. Sci Total Environ 711:134645. https://doi.org/10.1016/j.scitotenv.2019.134645 DOI

Kim KH, Kabir E, Jahan SA (2017) Exposure to pesticides and the associated human health effects. Sci Total Environ 575:525–535. https://doi.org/10.1016/j.scitotenv.2016.09.009 DOI

Korzeniowska J, Stanislawska-Glubiak E (2015) Phytoremediation potential of Miscanthus × giganteus and Spartina pectinata in soil contaminated with heavy metals. Environ Sci Pollut Res 22:11648–11657. https://doi.org/10.1007/s11356-015-4439-1 DOI

Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227. https://doi.org/10.1016/S0961-9534(00)00032-5 DOI

Meylan WM, Howard PH (2005) Estimating octanol-air partition coefficients with octanol-water partition coefficients and Henry’s law constants. Chemosphere 61:640–644. https://doi.org/10.1016/j.chemosphere.2005.03.029 DOI

MHRK and MEPRK (2004) Standards for maximum permissible concentrations of harmful substances, pests and other biological substances polluting the soil, approved by a joint order of the Ministry of Health of the Republic of Kazakhstan dated January 30, 2004 No. 99 and the Ministry of Environmental Protection of the Republic of Kazakhstan dated January 27, 2004 No. 21-P

Morillo E, Villaverde J (2017) Advanced technologies for the remediation of pesticide-contaminated soils. Sci Total Environ 586:576–597. https://doi.org/10.1016/j.scitotenv.2017.02.020 DOI

Nartey OD, Zhao B (2014) Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: An overview. Adv Mater Sci Eng 2014:1–12. https://doi.org/10.1155/2014/715398 DOI

Nurzhanova A, Pidlisnyuk V, Sailaukhanuly Y, Kenessov B, Trogl J, Aligulova R, Kalugin S, Nurmagambetova А, Abit K, Stefanovska T, Erickson L (2017) Phytoremediation of military soil contaminated by metals and organochlorine pesticides using Miscanthus. Comm Appl Biol Sci 82:61–68

Nurzhanova A, Pidlisnyuk V, Abit K, Nurzhanov C, Kenessov B, Stefanovska T, Erickson L (2019) Comparative assessment of using Miscanthus × giganteus for remediation of soils contaminated by heavy metals: a case of military and mining sites. Environ Sci Pollut Res 26:13320–13333. https://doi.org/10.1007/s11356-019-04707-z DOI

Paul A, Ghosh C, Boettinger WJ (2011) Diffusion parameters and growth mechanism of phases in the Cu-Sn system. Metall Mater Trans A Phys Metall Mater Sci 42:952–963. https://doi.org/10.1007/s11661-010-0592-9 DOI

Pidlisnyuk V, Stefanovska T, Lewis EE, Erickson LE, Davis LC (2014) Miscanthus as a productive biofuel crop for phytoremediation. CRC Crit Rev Plant Sci 33(1):1–19. https://doi.org/10.1080/07352689.2014.847616 DOI

Pidlisnyuk V, Erickson L, Stefanovska T, Popelka J, Hettiarachchi G, Davis L, Trogl J (2019) Potential phytomanagement of military polluted sites and biomass production using biofuel crop Miscanthus x giganteus. Environ Pollut 249:330–337. https://doi.org/10.1016/j.envpol.2019.03.018 DOI

Pillai HPS, Kottekottil J (2016) Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. J Environ Prot (Irvine, Calif) 7:734–744. https://doi.org/10.4236/jep.2016.75066 DOI

Ramamurthy AS, Memarian R (2012) Phytoremediation of mixed soil contaminants. Water Air Soil Pollut 223:511–518. https://doi.org/10.1007/s11270-011-0878-6 DOI

Rani M, Shanker U, Jassal V (2017) Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. J Environ Manag 190:208–222. https://doi.org/10.1016/j.jenvman.2016.12.068 DOI

Ren C, Wang T, Xu Y, Deng J, Zhao F, Yang G, Han X, Feng Y, Ren G (2018) Differential soil microbial community responses to the linkage of soil organic carbon fractions with respiration across land-use changes. For Ecol Manag 409:170–178. https://doi.org/10.1016/j.foreco.2017.11.011 DOI

Saito H, Koyasu J, Shigeoka T (1993) Cytotoxicity of anilines and aldehydes to goldfish GFS cells and relationships with 1-octanol/water partition coefficients. Chemosphere 27:1553–1560. https://doi.org/10.1016/0045-6535(93)90249-5 DOI

Sangster J (1993) LOGKOW Databank. A databank of evaluated octanol-water partition coefficients (log P) on microcomputer diskette

Sharma A, Kumar V, Handa N, Bali S, Kaur R, Khanna K, Thukral AK, Bhardwaj R (2018) Potential of endophytic bacteria in heavy metal and pesticide detoxification. Springer Singapore:307–336. https://doi.org/10.1007/978-981-10-5514-0_14

Sibley JL, Yang X, Lu W et al (2018) Effects of a nonionic surfactant on growth, photosynthesis, and transpiration of New Guinea impatiens in the greenhouse. J Environ Hortic 36:73–81. https://doi.org/10.24266/0738-2898-36.2.73 DOI

Simpson CD, Wilcock RJ, Smith TJ, Wilkins AL, Langdon AG (1995) Determination of octanol-water partition coefficients for the major components of technical chlordane. Bull Environ Contam Toxicol 55:149–153. https://doi.org/10.1007/BF00212402 DOI

Smith AG (1991) Chlorinated hydrocarbon insecticides. In: Hayes WJ, Laws ER (eds) Handbook of pesticide toxicology. Academic Press, San Diego, pp 731–915

ST RK 2011-2010 (2010) Water, food, feed and tobacco. Determination of organochlorine pesticides by chromatographic methods

ST RK 2131–2011 (2012) Soil quality. Determination of organochlorine pesticides and polychlorinated biphenyl content. Gas chromatographic method with electron capture detection

Stowe BB (1958) Growth promotion in pea epicotyl sections by fatty acid esters author(s): Bruce B. Stowe Published by: American Association for the Advancement of Science Stable 128:421–423. http://www.jstor.org/stable/1755080

Straub D, Yang H, Liu Y, Tsap T, Ludewig U (2013) Root ethylene signalling is involved in Miscanthus sinensis growth promotion by the bacterial endophyte Herbaspirillum frisingense GSF30T. J Exp Bot 64:4603–4615. https://doi.org/10.1093/jxb/ert276 DOI

Tarla DN, Erickson LE, Hettiarachchi GM, Amadi SI, Galkaduwa M, Davis LC, Nurzhanova A, Pidlisnyuk V (2020) Phytoremediation and bioremediation of pesticide-contaminated soil. Appl Sci 10:1217. https://doi.org/10.3390/app10041217 DOI

Turner BC, Taylor AW, Edwards WM (1972) Dieldrin and heptachlor residues in soybeans 1. Agron J 64:237–239. https://doi.org/10.2134/agronj1972.00021962006400020032x DOI

Van de Plassche EJ (1994) Towards integrated environmental quality objectives for several compounds with a potential for secondary poisoning. RIVM Rapp:679101012

Velásquez JA, Ferrando F, Farriol X, Salvadó J (2003) Binderless fiberboard from steam exploded Miscanthus sinensis. Wood Sci Technol 37:269–278. https://doi.org/10.1007/s00226-003-0182-8 DOI

Weber R, Gaus C, Tysklind M, Johnston P, Forter M, Hollert H, Heinisch E, Holoubek I, Lloyd-Smith M, Masunaga S, Moccarelli P, Santillo D, Seike N, Symons R, Torres JPM, Verta M, Varbelow G, Vijgen J, Watson A, Costner P, Woelz J, Wycisk P, Zennegg M (2008) Dioxin- and POP-contaminated sites—contemporary and future relevance and challenges: overview on background, aims and scope of the series. Environ Sci Pollut Res 15(5):363–393. https://doi.org/10.1007/s11356-008-0024-1 DOI

White JC, Kottler BD (2002) Citrate-mediated increase in the uptake of weathered 2,2-bis( p -chlorophenyl)1,1-dichloroethylene residues by plants. Environ Toxicol Chem 21:550–556. https://doi.org/10.1002/etc.5620210312 DOI

WHO (1991) Endrin health and safety guide. World Health Organization

Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762. https://doi.org/10.1016/j.envint.2005.02.004 DOI

Yehya S, Delannoy M, Fournier A, Baroudi M, Rychen G, Feidt C (2017) Activated carbon, a useful medium to bind chlordecone in soil and limit its transfer to growing goat kids. PLoS One 12:e0179548. https://doi.org/10.1371/journal.pone.0179548 DOI

Zeeb BA, Amphlett JS, Rutter A, Reimer K (2006) Potential for phytoremediation of polychlorinated biphenyl-(PCB)- contaminated soil. Int J Phytoremediation 8:199–221. https://doi.org/10.1080/15226510600846749 DOI

Zhang N, Yang Y, Tao S, Liu Y, Shi KL (2011) Sequestration of organochlorine pesticides in soils of distinct organic carbon content. Environ Pollut 159:700–705. https://doi.org/10.1016/j.envpol.2010.12.011 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...