Determination of Ochratoxin A and Ochratoxin B in Archived Tokaj Wines (Vintage 1959-2017) Using On-Line Solid Phase Extraction Coupled to Liquid Chromatography
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
STARSS (Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000465)
ERDF - International
SVV 260 548
Charles University - International
GA UK No 1134119
Charles University - International
APVV-15-0355
Slovak Research and Development Agency - International
PubMed
33255273
PubMed Central
PMC7761308
DOI
10.3390/toxins12120739
PII: toxins12120739
Knihovny.cz E-resources
- Keywords
- Tokaj wine, chromatography, column switching, food control, mycotoxin, ochratoxin A, ochratoxin B, online extraction,
- MeSH
- Food Analysis methods MeSH
- Chromatography, Liquid MeSH
- Solid Phase Extraction MeSH
- Food Contamination analysis MeSH
- Ochratoxins analysis MeSH
- Quality Control MeSH
- Sensitivity and Specificity MeSH
- Wine analysis MeSH
- Vitis chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ochratoxin A MeSH Browser
- ochratoxin B MeSH Browser
- Ochratoxins MeSH
According to the EU legislation, ochratoxin A contamination is controlled in wines. Tokaj wine is a special type of sweet wine produced from botrytized grapes infected by "noble rot" Botrytis cinerea. Although a high contamination was reported in sweet wines and noble rot grapes could be susceptible to coinfection with other fungi, including ochratoxigenic species, no screening of Tokaj wines for mycotoxin contamination has been carried out so far. Therefore, we developed an analytical method for the determination of ochratoxin A (OTA) and ochratoxin B (OTB) involving online SPE coupled to HPLC-FD using column switching to achieve the fast and sensitive control of mycotoxin contamination. The method was validated with recoveries ranging from 91.6% to 99.1% with an RSD less than 2%. The limits of quantification were 0.1 and 0.2 µg L-1 for OTA and OTB, respectively. The total analysis time of the online SPE-HPLC-FD method was a mere 6 min. This high throughput enables routine analysis. Finally, we carried out an extensive investigation of the ochratoxin contamination in 59 Slovak Tokaj wines of 1959-2017 vintage. Only a few positives were detected. The OTA content in most of the checked wines did not exceed the EU maximum tolerable limit of 2 µg L-1, indicating a good quality of winegrowing and storing.
See more in PubMed
Travis R.B.K., Wu F. Ochratoxin A and Human Health Risk: A Review of the Evidence. Crit. Rev. Food Sci. Nutr. 2015;55:1860–1869. doi: 10.1080/10408398.2012.724480. PubMed DOI PMC
Mateo R., Medina Á., Mateo E.M., Mateo F., Jimenéz M. An overview of ochratoxin a in beer and wine. Int. J. Food Microbiol. 2007;119:79–83. doi: 10.1016/j.ijfoodmicro.2007.07.029. PubMed DOI
IARC . Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 56 IARC; Lyon, France: 1993. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins.
Ringot D., Chango A., Schneider Y.J., Larondelle Y. Toxicokinetics and toxicodynamics of ochratoxin A, an update. Chem. Biol. Interact. 2006;159:18–46. doi: 10.1016/j.cbi.2005.10.106. PubMed DOI
Xu B., Jia X., Gu L., Sung C. Review on the qualitative and quantitative analysis of the mycotoxin citrinin. Food Control. 2006;17:271–285. doi: 10.1016/j.foodcont.2004.10.012. DOI
Peraica M., Domijan A.M., Miletić-Medved M., Fuchs R. The involvement of mycotoxins in the development of endemic nephropathy. Wien. Klin. Wochen. 2008;120:402–407. doi: 10.1007/s00508-008-0981-x. PubMed DOI
Bayman P., Baker J.L. Ochratoxins: A global perspective. Mycopatologia. 2006;162:215–223. doi: 10.1007/s11046-006-0055-4. PubMed DOI
Heussner A.H., Dietrich D.R., O’Brien E. In vitro investigation of individual and combined cytotoxic effects of ochratoxin A and other selected mycotoxins on renal cells. Toxicol. Vitro. 2006;20:332–341. doi: 10.1016/j.tiv.2005.08.003. PubMed DOI
Remiro R., Ibáñez-Vea M., González-Peñas E., Lizarraga E. Validation of a liquid chromatography method for the simultaneous quantification of ochratoxin A and its analogues in red wines. J. Chromatogr. A. 2010;1217:8249–8256. doi: 10.1016/j.chroma.2010.11.004. PubMed DOI
Di Stefano V., Avellone G., Pitonzo R., Capocchiano V.G., Mazza A., Cicero N., Dugo G. Natural co-occurrence of ochratoxin A, ochratoxin B and aflatoxins in Sicilian red wines. Food Addit. Contam. Part A. 2015;32:1343–1351. doi: 10.1080/19440049.2015.1055521. PubMed DOI
EC—European Commission Commission Regulation (EC) No 1881/2006 of 19 December setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union L. 2006;364:5–24.
Bene Z., Mayar I. Characterization of yeast and mould biota of botrytized grapes in Tokaj wine region in the years 2000 and 2001. Acta Aliment. 2004;33:259–267. doi: 10.1556/AAlim.33.2004.3.6. DOI
Felsociova S., Rybarik L., Tancinova D., Maskova Z., Kacaniova M. Microfungi and mycotoxins of grapes from Tokaj wine region. J. Microbiol. Biotechnol. Food Sci. 2015;4:16–18. doi: 10.15414/jmbfs.2015.4.special1.16-18. DOI
Gil-Sena J., Vazques C., Gonzáles-Jaén M.T., Patino B. Wine Contamination with Ochratoxins: A Review. Beverages. 2018;4:6. doi: 10.3390/beverages4010006. DOI
Wongworapat K., Tu Ho M.H., Soontornjanagit M., Kawamura O. Occurrence of ochratoxin A and ochratoxin B in commercial coffee in Vietnam and Thailand. JSM Mycotoxins. 2016;66:1–6. doi: 10.2520/myco.66.1. DOI
Pena A., Cerejo F., Lino C., Silveira I. Determination of ochratoxin A in Portuguese rice samples by high performance liquid chromatography with fluorescence detection. Anal. Bioanal. Chem. 2005;382:1288–1293. doi: 10.1007/s00216-005-3254-9. PubMed DOI
Copetti M.V., Iamanaka B.T., Nester M.A., Efraim P., Taniwaki M.H. Occurrence of ochratoxin A in cocoa by-products and determination of its reduction during chocolate manufacture. Food Chem. 2013;136:100–104. doi: 10.1016/j.foodchem.2012.07.093. PubMed DOI
Maham M., Kiarostami V., Waqif-Husain S., Karami-Osboo R., Mirabolfathy M. Analysis of Ochratoxin A in Malt Beverage Samples using Dispersive Liquid–Liquid Microextraction Coupled with Liquid Chromatography-Fluorescence Detection. Czech. J. Food Sci. 2013;31:520–525. doi: 10.17221/543/2012-CJFS. DOI
Aresta A., Palmisano F., Vatinno R., Zambonin C.G. Ochratoxin A determination in beer by solid-phase microextraction coupled to liquid chromatography with fluorescence detection: A fast and sensitive method for assessment of noncompliance to legal limits. J. Agric. Food Chem. 2006;54:1594–1598. doi: 10.1021/jf052666o. PubMed DOI
Al-Hadithi N., Kössler P., Karlovsky P. Determination of Ochratoxin A in Wheat and Maize by Solid Bar Microextraction with Liquid Chromatography and Fluorescence Detection. Toxins. 2015;7:3000–3011. doi: 10.3390/toxins7083000. PubMed DOI PMC
Li P., Pei F., Liu Q., Fang Y. Magnetic Solid-Phase Extraction for the Determination of Ochratoxin A in Wine and Beer by HPLC-FLD. Curr. Anal. Chem. 2018;14:129–134. doi: 10.2174/1573411014666171221163343. DOI
Iida K., Tabata S., Kimura K., Suzuki J., Ibe A. Simultaneous Determination and Survey of Ochratoxin A, Ochratoxin B and Citrinin in Cereals by LC/MS/MS. ChemoBio Integr. Manag. 2009;5:24–31. doi: 10.11171/chemobio.5.24. DOI
Zhao Z.Y., Liu N., Yang L.C., Wu A.B., Zhou Z.L., Deng Y.F., Song S.Q., Wang J.H., Hou J.F. A new preparative method for simultaneous purification of ochratoxin A and ochratoxin B from wheat culture inoculated with Aspergillus ochraceous. World Mycotoxin J. 2016;9:31–40. doi: 10.3920/WMJ2014.1785. DOI
Prelle A., Sparado D., Garibaldi A., Gullino M.L. Co-occurrence of aflatoxins and ochratoxin a in spices commercialized in Italy. Food Control. 2014;39:192–197. doi: 10.1016/j.foodcont.2013.11.013. DOI
Karabín M., Lukočová A., Fiala J., Jelínek L., Hudcová T., Wang D., Dostálek P. An immunochemical Method for Determination of Ochratoxin A in the Wine and its Applications. Kvasný Průmysl. 2014;60:226–232. doi: 10.18832/kp2014021. DOI
Afrali D., Fathirad F., Ghaseminezhas S. Determination of trace amounts of ochratoxin A in different food samples based on gold nanoparticles modified carbon paste electrode. J. Food Sci. Technol. 2016;53:909–914. doi: 10.1007/s13197-015-2016-8. PubMed DOI PMC
Mikulíková R., Běláková S., Benešová K., Svoboda Z. Study of ochratoxin A content in South Moravian and foreign wines by the UPLC method with fluorescence detection. Food Chem. 2012;133:55–59. doi: 10.1016/j.foodchem.2011.12.061. DOI
Visconti A., Pascale M., Centonze G. Determination of ochratoxin a in wine and beer by immunoaffinity column and liquid chromatographic analysis with fluorometric detection: Collaborative study. J. AOAC Int. 2001;84:1818–1827. doi: 10.1093/jaoac/84.6.1818. PubMed DOI
Lhotská I., Šatínský D., Havlíková L., Solich P. A fully automated and fast method using direct sample injection combined with fused-core column online SPE-HPLC for determination of ochratoxin a and citrinin in lager beers. Anal. Bioanal. Chem. 2016;408:3319–3329. doi: 10.1007/s00216-016-9402-6. PubMed DOI
Bacaloni A., Cavaliere C., Faberi A., Pastorini E., Samperi R., Laganá A. Automated On-line Solid-Phase Extraction-Liquid Chromatography-Electrospray Tandem Mass Spectrometry Method for the Determination of Ochratoxin A in Wine and Beer. J. Agric. Food Chem. 2005;53:5518–5525. doi: 10.1021/jf050254+. PubMed DOI
Armutcu C., Uzun L., Denizli A. Determination of Ochratoxin A traces in foodstuffs: Comparison of an automated on-line two-dimensional high-performance liquid chromatography and off-line immunoaffinity-high-performance liquid chromatography system. J. Chromatogr. A. 2018;1569:139–148. doi: 10.1016/j.chroma.2018.07.057. PubMed DOI
Campone L., Piccinelli A.L., Celano R., Pagano I., Russo M., Rastrelli L. Rapid and automated on-line solid phase extraction HPLC–MS/MS with peak focusing for the determination of ochratoxin A in wine samples. Food Chem. 2018;244:128–135. doi: 10.1016/j.foodchem.2017.10.023. PubMed DOI
National Center for Biotechnology Information PubChem Database. Ochratoxin A, CID=442530. [(accessed on 14 April 2020)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ochratoxin-A.
National Center for Biotechnology Information PubChem Database. Ochratoxin B, CID=20966. [(accessed on 14 April 2020)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ochratoxin-B.
Freire L., Braga P.A.C., Furtado M.M., Delafiori J., Dias-Audibert F.L., Pereira G.E., Reyes F.G., Catharino R.R., Sant’Ana A.S. From grape to wine: Fate of ochratoxin A during red, rose, and white winemaking process and the presence of ochratoxin derivatives in the final products. Food Control. 2020;113:107167. doi: 10.1016/j.foodcont.2020.107167. DOI
Yu J., Smith I.N., Mikiashivili N. Reducing Ochratoxin A Content in Grape Pomace by Different Methods. Toxins. 2020;12:424. doi: 10.3390/toxins12070424. PubMed DOI PMC
Bittner A., Cramer B., Humpf H.U. Matrix Binding of Ochratoxin A during Roasting. J. Agric. Food Chem. 2013;61:12737–12743. doi: 10.1021/jf403984x. PubMed DOI
Remiro R., González-Peñas E., Lizarraga E., López de Cerain A. Quantification of ochratoxin A and five analogs in Navarra red wines. Food Control. 2012;27:139–145. doi: 10.1016/j.foodcont.2012.03.006. DOI
Amerine M.A., Joslyn M.A. Table Wines: The Technology of Their Production. 2nd ed. University of California Press; Berkeley, CA, USA: Los Angeles, CA, USA: 1970. pp. 37–38.