Innovative Animal Model of DSS-Induced Ulcerative Colitis in Pseudo Germ-Free Mice
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33271873
PubMed Central
PMC7761014
DOI
10.3390/cells9122571
PII: cells9122571
Knihovny.cz E-zdroje
- Klíčová slova
- DSS-induced colitis, antibiotics, gut microbiota, histopathology, pseudo germ-free model,
- MeSH
- antibakteriální látky farmakologie MeSH
- apoptóza fyziologie MeSH
- epitelové buňky patologie MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- proliferace buněk fyziologie MeSH
- síran dextranu farmakologie MeSH
- střevní mikroflóra účinky léků fyziologie MeSH
- střevní sliznice mikrobiologie patologie MeSH
- ulcerózní kolitida chemicky indukované farmakoterapie patologie MeSH
- zánět farmakoterapie patologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- síran dextranu MeSH
The aim of this study was to investigate the use of a standardized animal model subjected to antibiotic treatment, and the effects of this treatment on the course of dextran sodium sulphate (DSS)-induced colitis in mice. By decontamination with selective antibiotics and observation of pathogenesis of ulcerative colitis (UC) induced chemically by exposure of mice to various concentrations of DSS, we obtained an optimum animal PGF model of acute UC manifested by mucin depletion, epithelial degeneration and necrosis, leading to the disappearance of epithelial cells, infiltration of lamina propria and submucosa with neutrophils, cryptitis, and accompanied by decreased viability of intestinal microbiota, loss of body weight, dehydration, moderate rectal bleeding, and a decrease in the selected markers of cellular proliferation and apoptosis. The obtained PGF model did not exhibit changes that could contribute to inflammation by means of alteration of the metabolic status and the induced dysbiosis did not serve as a bearer of pathogenic microorganisms participating in development of ulcerative colitis. The inflammatory process was induced particularly by exposure to DSS and its toxic action on compactness and integrity of mucosal barrier in the large intestine. This offers new possibilities of the use of this animal model in studies with or without participation of pathogenic microbiota in IBD pathogenesis.
Institute of Microbiology Czech Academy of Sciences Centre Algatech 379 01 Trebon Czech Republic
Institute of Parasitology Slovak Academy of Sciences 041 81 Kosice Slovakia
Zobrazit více v PubMed
Ramos G.P., Papadakis K.A. Mechanisms of disease: Inflammatory bowel diseases. Mayo Clin. Proc. 2019;94:155–165. doi: 10.1016/j.mayocp.2018.09.013. PubMed DOI PMC
Yu L.C. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: Exploring a common ground hypothesis. J. Biomed. Sci. 2018 doi: 10.1186/s12929-018-0483-8. PubMed DOI PMC
Nishida A., Inoue R., Inatomi O., Bamba S., Naito Y., Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin. J. Gastroenterol. 2018;11:1–10. doi: 10.1007/s12328-017-0813-5. PubMed DOI
Enck P., Mazurak N. Dysbiosis in functional bowel disorders. Ann. Nutr. Metab. 2018;72:296–306. doi: 10.1159/000488773. PubMed DOI
Rinninella E., Raoul P., Cintoni M., Franceschi F., Miggiano G.A.D., Gasbarrini A., Mele M.C. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7:14. doi: 10.3390/microorganisms7010014. PubMed DOI PMC
De Jong R.J., Ohnmacht C. Defining dysbiosis in inflammatory bowel disease. Immunity. 2019;50:8–10. doi: 10.1016/j.immuni.2018.12.028. PubMed DOI
Khan I., Ullah N., Zha L., Bai Y., Khan A., Zhao T., Che T., Zhang C. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens. 2019;8:126. doi: 10.3390/pathogens8030126. PubMed DOI PMC
Fang X., Monk J.M., Mih N., Du B., Sastry A.V., Kavvas E., Seif Y., Smarr L., Palsson B.O. Escherichia coli B2 strains prevalent in inflammatory bowel disease patients have distinct metabolic capabilities that enable colonization of intestinal mucosa. BMC Syst. Biol. 2018;12:66. doi: 10.1186/s12918-018-0587-5. PubMed DOI PMC
Ribaldone D.G., Caviglia G.P., Abdulle A., Pellicano R., Ditto M.C., Morino M., Fusaro E., Saracco G.M., Bugianesi E., Astegiano M. Adalimumab Therapy Improves Intestinal Dysbiosis in Crohn’s Disease. J. Clin. Med. 2019;8:1646. doi: 10.3390/jcm8101646. PubMed DOI PMC
Wei S.C., Chang T.A., Chao T.H., Chen J.S., Chou Y.H., Chuang C.H., Hsu W.H., Huang T.Y., Hsu T.C., Lin C.C., et al. Management of Crohn’s disease in Taiwan: Consensus guideline of the Taiwan society of inflammatory bowel disease. Intest. Res. 2017;15:285–310. doi: 10.5217/ir.2017.15.3.285. PubMed DOI PMC
Celik S.U., Nazarzade N., Turhan M.A., Cetinkaya H., Cakmak A., Tuzuner A. Gastroduodenal Crohn’s disease: A clinical case report. HPB. 2018;20:768. doi: 10.1016/j.hpb.2018.06.2491. PubMed DOI
Jiminez J.A., Uwiera T.C., Douglas Inglis G., Uwiera R.R. Animal models to study acute and chronic intestinal inflammation in mammals. Gut Pathog. 2015;7:29. doi: 10.1186/s13099-015-0076-y. PubMed DOI PMC
Nicklas W., Keubler L., Bleich A. Maintaining and monitoring the defined microbiota status of gnotobiotic rodents. ILAR J. 2015;56:241–249. doi: 10.1093/ilar/ilv029. PubMed DOI
Bylund-Fellenius A.C., Landström E., Axelsson L.G., Midtvedt T. Experimental colitis induced by dextran sulphate in normal and germfree mice. Microb. Ecol. Health Dis. 1994;7:207–215.
Kitajima S., Morimoto M., Sagara E., Shimizu C., Ikeda Y. Dextran sodium sulfate-induced colitis in germ-free IQI/Jic mice. Exp. Anim. 2001;50:387–395. doi: 10.1538/expanim.50.387. PubMed DOI
Hudcovic T., Stěpánková R., Cebra J., Tlaskalová-Hoggenová H. The role of microflora in the development of intestinal inflammation: Acute and chronic colitis induced by dextran sulfate in germ-free and conventionally reared immunocompetent and immunodeficient mice. Folia Microbiol. 2001;46:565–572. doi: 10.1007/BF02818004. PubMed DOI
Maslowski K.M., Vieira A.T., Ng A., Kranich J., Sierro F., Yu D., Schilter H.C., Rolph M.S., Mackay F., Artis D., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–1286. doi: 10.1038/nature08530. PubMed DOI PMC
Hernández-Chirlaque C., Aranda C.J., Ocón B., Capitán-Cañadas F., Ortega-González M., Carrero J.J., Suárez M.D., Zarzuelo A., Sánchez de Medina F., Martínez-Augustin O. Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. J. Crohns Colitis. 2016;10:1324–1335. doi: 10.1093/ecco-jcc/jjw096. PubMed DOI
Popper M., Gancarčíková S., Maďar M., Mudroňová D., Hrčková G., Nemcová R. Amoxicillin-clavulanic acid and ciprofloxacin-treated SPF mice as gnotobiotic model. Appl. Microbiol. Biotechnol. 2016;100:9671–9682. doi: 10.1007/s00253-016-7855-3. PubMed DOI
Gancarčíková S., Popper M., Hrčková G., Ma’ar M., Mudroňová D., Sopková D., Nemcová R. In: Antibiotic-treated SPF Mice as a Gnotobiotic Model. Savic S., editor. InTech; Rijeka, Croatia: 2018. pp. 45–83. Use in Animals.
Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., Glöckner F.O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1. doi: 10.1093/nar/gks808. PubMed DOI PMC
Vetrovský T., Baldrian P., Morais D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics. 2018;34:2292–2294. doi: 10.1093/bioinformatics/bty071. PubMed DOI PMC
Edgar R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods. 2013;10:996–998. doi: 10.1038/nmeth.2604. PubMed DOI
Smolen A.J. In: Image Analytic Techniques for Quantification of Immunocytochemical Staining in the Nervous System. Conn P.M., editor. Academic Press; New York, NY, USA: 1990. pp. 208–229. Methods in Neurosciences.
Erben U., Loddenkemper C., Doerfel K., Spieckermann S., Haller D., Heimesaat M.M., Zeitz M., Siegmund B., Kühl A.A. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int. J. Clin. Exp. Pathol. 2014;7:4557–4576. PubMed PMC
Gaudio E., Taddei G., Vetuschi A., Sferra R., Frieri G., Ricciardi G., Caprilli R. Dextran sulfate sodium (DSS) colitis in rats (clinical, structural, and ultrastructural aspects) Dig. Dis. Sci. 1999;44:1458–1475. doi: 10.1023/A:1026620322859. PubMed DOI
Abdelmegid A.M., Abdo F.K., Ahmed F.E., Kattaia A.A.A. Therapeutic effect of gold nanoparticles on DSS-induced ulcerative colitis in mice with reference to interleukin-17 expression. Sci. Rep. 2019;9:10176. doi: 10.1038/s41598-019-46671-1. PubMed DOI PMC
Kiesler P., Fuss I.J., Strober W. Experimental models of inflammatory bowel diseases. Cell. Mol. Gastroenterol. Hepatol. 2015;1:154–170. doi: 10.1016/j.jcmgh.2015.01.006. PubMed DOI PMC
Gardlik R., Wagnerova A., Celec P. Effects of bacteria-mediated reprogramming and antibiotic pretreatment on the course of colitis in mice. Mol. Med. Rep. 2014;10:983–988. doi: 10.3892/mmr.2014.2244. PubMed DOI
Caputi V., Marsilio I., Filpa V., Cerantola S., Orso G., Bistoletti M., Paccagnella N., De Martin S., Montopoli M., Dall’Acqua S., et al. Antibiotic-induced dysbiosis of the microbiota impairs gut neuromuscular function in juvenile mice. Br. J. Pharmacol. 2017;174:3623–3639. doi: 10.1111/bph.13965. PubMed DOI PMC
Kennedy E.A., King K.Y., Baldridge M.T. Mouse microbiota models: Comparing germ-free mice and antibiotics treatment as tools for modifying gut bacteria. Front. Physiol. 2018;9:1534. doi: 10.3389/fphys.2018.01534. PubMed DOI PMC
Johnson S.A., Nicolson S.W., Jackson S. The effect of different oral antibiotics on the gastrointestinal microflora of a wild rodent (Aethomys namaquensis) Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2004;138:475–483. doi: 10.1016/j.cbpb.2004.06.010. PubMed DOI
Gonzalez-Perez G., Hicks A.L., Tekieli T.M., Radens C.M., Williams B.L., Lamousé-Smith E.S. Maternal antibiotic treatment impacts development of the neonatal intestinal microbiome and antiviral immunity. J. Immunol. 2016;196:3768–3779. doi: 10.4049/jimmunol.1502322. PubMed DOI
Brown R.L., Sequeira R.P., Clarke T.B. The microbiota protects against respiratory infection via GM-CSF signaling. Nat. Commun. 2017;8:1512. doi: 10.1038/s41467-017-01803-x. PubMed DOI PMC
Hansen A.K. Antibiotic treatment of nude rats and its impact on the aerobic bacterial flora. Lab. Anim. 1995;29:37–44. doi: 10.1258/002367795780740410. PubMed DOI
Hoentjen F., Harmsen H.J., Braat H., Torrice C.D., Mann B.A., Sartor R.B., Dieleman L.A. Antibiotics with a selective aerobic or anaerobic spectrum have different therapeutic activities in various regions of the colon in interleukin 10 gene deficient mice. Gut. 2003;52:1721–1727. doi: 10.1136/gut.52.12.1721. PubMed DOI PMC
Atarashi K., Tanoue T., Shima T., Imaoka A., Kuwahara T., Momose Y., Cheng G., Yamasaki S., Saito T., Ohba Y., et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331:337–341. doi: 10.1126/science.1198469. PubMed DOI PMC
Schubert A.M., Sinani H., Schloss P.D. Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. mBio. 2015;6:e00974. doi: 10.1128/mBio.00974-15. PubMed DOI PMC
Sun L., Zhang X., Zhang Y., Zheng K., Xiang Q., Chen N., Chen Z., Zhang N., Zhu J., He Q. Antibiotic-induced disruption of gut microbiota alters local metabolomes and immune responses. Front. Cell. Infect. Microbiol. 2019;9:99. doi: 10.3389/fcimb.2019.00099. PubMed DOI PMC
Hashiguchi M., Kashiwakura Y., Kojima H., Kobayashi A., Kanno Y., Kobata T. Peyer’s patch innate lymphoid cells regulate commensal bacteria expansion. Immunol. Lett. 2015;165:1–9. doi: 10.1016/j.imlet.2015.03.002. PubMed DOI
Johansson M.E., Jakobsson H.E., Holmén-Larsson J., Schütte A., Ermund A., Rodríguez-Piñeiro A.M., Arike L., Wising C., Svensson F., Bäckhed F., et al. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe. 2015;18:582–592. doi: 10.1016/j.chom.2015.10.007. PubMed DOI PMC
Thackray L.B., Handley S.A., Gorman M.J., Poddar S., Bagadia P., Briseño C.G., Theisen D.J., Tan Q., Hykes B.L., Jr., Lin H., et al. Oral antibiotic treatment of mice exacerbates the disease severity of multiple flavivirus infections. Cell Rep. 2018;22:3440–3453.e6. doi: 10.1016/j.celrep.2018.03.001. PubMed DOI PMC
Zarrinpar A., Chaix A., Xu Z.Z., Chang M.W., Marotz C.A., Saghatelian A., Knight R., Panda S. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat. Commun. 2018;9:2872. doi: 10.1038/s41467-018-05336-9. PubMed DOI PMC
Tamanai-Shacoori Z., Smida I., Bousarghin L., Loreal O., Meuric V., Fong S.B., Bonnaure-Mallet M., Jolivet-Gougeon A. Roseburia spp.: A marker of health? Future Microbiol. 2017;12:157–170. doi: 10.2217/fmb-2016-0130. PubMed DOI
Vermeiren J., Van den Abbeele P., Laukens D., Vigsnaes L.K., De Vos M., Boon N., Van de Wiele T. Decreased colonization of fecal Clostridium coccoides/Eubacterium rectale species from ulcerative colitis patients in an in vitro dynamic gut model with mucin environment. FEMS Microbiol. Ecol. 2012;79:685–696. doi: 10.1111/j.1574-6941.2011.01252.x. PubMed DOI
Chen L., Wang W., Zhou R., Ng S.C., Li J., Huang M., Zhou F., Wang X., Shen B., AKamm M., et al. Characteristics of fecal and mucosa-associated microbiota in Chinese patients with inflammatory bowel disease. Medicine. 2014;93:e51. doi: 10.1097/MD.0000000000000051. PubMed DOI PMC
Markowiak-Kopeć P., Śliżewska K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients. 2020;12:1107. doi: 10.3390/nu12041107. PubMed DOI PMC
Chaia A., Olivier G. Gut Flora, Nutrition, Immunity and Health. Wiley-Blackwell; Hoboken, NJ, USA: 2003. Intestinal Microflora and Metabolic Activity; pp. 77–98.
Wong J.M., Jenkins D.J. Carbohydrate digestibility and metabolic effects. J. Nutr. 2007;137(Suppl. S11):2539S–2546S. doi: 10.1093/jn/137.11.2539S. PubMed DOI
Dobišová M. Využitie Germ-Free Animálnych Modelov v Biomedicínskom Výskume. [(accessed on 23 May 2019)];2019 Available online: http://opac.crzp.sk/?fn=detailBiblioForm&sid=AE9ECE62FB99CFC2CFD4E49C925D&seo=CRZP-detail-kniha.
Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly Y.M., Glickman J.N., Garrett W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–573. doi: 10.1126/science.1241165. PubMed DOI PMC
Arpaia N., Campbell C., Fan X., Dikiy S., Van der Veeken J., DeRoos P., Liu H., Cross J.R., Pfeffer K., Coffer P.J., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–455. doi: 10.1038/nature12726. PubMed DOI PMC
Yan J., Herzog J.W., Tsang K., Brennan C.A., Bower M.A., Garrett W.S., Sartor B.R., Aliprantis A.O., Charles J.F. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc. Natl. Acad. Sci. USA. 2016;113:E7554–E7563. doi: 10.1073/pnas.1607235113. PubMed DOI PMC
Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165:1332–1345. doi: 10.1016/j.cell.2016.05.041. PubMed DOI
Reichardt N., Duncan S.H., Young P., Belenguer A., McWilliam Leitch C., Scott KPLouis P. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8:1323–1335. doi: 10.1038/ismej.2014.14. PubMed DOI PMC
Louis P., Hold G.L., Flint H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014;12:661–672. doi: 10.1038/nrmicro3344. PubMed DOI
Vital M., Howe A.C., Tiedje J.M. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data. mBio. 2014;5:e00889. doi: 10.1128/mBio.00889-14. PubMed DOI PMC
Serpa J., Caiado F., Carvalho T., Torre C., Gonçalves L.G., Casalou C., Lamosa P., Rodrigues M., Zhu Z., Lam E.W., et al. Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells. J. Biol. Chem. 2010;285:39211–39223. doi: 10.1074/jbc.M110.156026. PubMed DOI PMC
Macfarlane S., Bahrami B., Macfarlane G.T. Mucosal biofilm communities in the human intestinal tract. Adv. Appl. Microbiol. 2011;75:111–143. PubMed
Kitajima S., Takuma S., Morimoto M. Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Exp. Anim. 2000;49:9–15. doi: 10.1538/expanim.49.9. PubMed DOI
Hirono I., Kuhara K., Yamaji T., Hosaka S., Golberg L. Carcinogenicity of dextran sulfate sodium in relation to its molecular weight. Cancer Lett. 1983;18:29–34. doi: 10.1016/0304-3835(83)90114-3. PubMed DOI
Melgar S., Karlsson A., Michaëlsson E. Acute colitis induced by dextran sulfate sodium progresses to chronicity in C57BL/6 but not in BALB/c mice: Correlation between symptoms and inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;288:1328–1338. doi: 10.1152/ajpgi.00467.2004. PubMed DOI
Nunes N.S., Chandran P., Sundby M., Visioli F., Da Costa Gonçalves F., Burks S.R., Paz A.H., Frank J.A. Therapeutic ultrasound attenuates DSS-induced colitis through the cholinergic anti-inflammatory pathway. EBioMedicine. 2019;45:495–510. doi: 10.1016/j.ebiom.2019.06.033. PubMed DOI PMC
Zhou H., Zhang H., Guan L., Zhang Y., Li Y., Sun M. Mechanism and therapeutic effects of Saccharomyces boulardii on experimental colitis in mice. Mol. Med. Rep. 2018;6:5652–5662. doi: 10.3892/mmr.2018.9612. PubMed DOI PMC
Jenkins D., Goodall A., Scott B.B. Simple objective criteria for diagnosis of causes of acute diarrhoea on rectal biopsy. J. Clin. Pathol. 1997;50:580–585. doi: 10.1136/jcp.50.7.580. PubMed DOI PMC
Matos I., Bento A.F., Marcon R., Claudino R.F., Calixto J.B. Preventive and therapeutic oral administration of the pentacyclic triterpene α,β-amyrin ameliorates dextran sulfate sodium-induced colitis in mice: The relevance of cannabinoid system. Mol. Immunol. 2013;54:482–492. doi: 10.1016/j.molimm.2013.01.018. PubMed DOI
Song J.L., Qian Y., Li G.J., Zhao X. Anti-inflammatory effects of kudingcha methanol extract (Ilex kudingcha C.J. Tseng) in dextran sulfate sodium-induced ulcerative colitis. Mol. Med. Rep. 2013;8:1256–1262. doi: 10.3892/mmr.2013.1635. PubMed DOI
Zhao J., Hong T., Dong M., Meng Y., Mu J. Protective effect of myricetin in dextran sulphate sodium-induced murine ulcerative colitis. Mol. Med. Rep. 2013;7:565–570. doi: 10.3892/mmr.2012.1225. PubMed DOI
Perše M., Cerar A. Dextran sodium sulphate colitis mouse model: Traps and tricks. J. Biomed. Biotechnol. 2012;2012:718617. doi: 10.1155/2012/718617. PubMed DOI PMC
Rausch S., Huehn J., Loddenkemper C., Hepworth M.R., Klotz C., Sparwasser T., Hamann A., Lucius R., Hartmann S. Establishment of nematode infection despite increased Th2 responses and immunopathology after selective depletion of Foxp3+ cells. Eur. J. Immunol. 2009;39:3066–3077. doi: 10.1002/eji.200939644. PubMed DOI
Asseman C., Mauze S., Leach M.W., Coffman R.L., Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 1999;190:995–1004. doi: 10.1084/jem.190.7.995. PubMed DOI PMC
Arda-Pirincci P., Aykol-Celik G. Galectin-1 reduces the severity of dextran sulfate sodium (DSS)-induced ulcerative colitis by suppressing inflammatory and oxidative stress response. Bosn. J. Basic Med. Sci. 2020 doi: 10.17305/bjbms.2019.4539. PubMed DOI PMC
Brown D.C., Gatter K.C. Monoclonal antibody Ki-67: Its use in histopathology. Histopathology. 1990;17:489–503. doi: 10.1111/j.1365-2559.1990.tb00788.x. PubMed DOI
Yamada K., Yoshitake K., Sato M., Ahnen D.J. Proliferating cell nuclear antigen expression in normal, preneoplastic, and neoplastic colonic epithelium of the rat. Gastroenterology. 1992;103:160–167. doi: 10.1016/0016-5085(92)91109-H. PubMed DOI
Kang J., Zhang Z., Wang J., Wang G., Yan Y., Qian H., Zhang X., Xu W., Mao F. hucMSCs attenuate IBD through releasing miR148b-5p to inhibit the expression of 15-lox-1 in macrophages. Mediat. Inflamm. 2019 doi: 10.1155/2019/6953963. PubMed DOI PMC
Adachi T., Sakurai T., Kashida H., Mine H., Hagiwara S., Matsui S., Yoshida K., Nishida N., Watanabe T., Itoh K., et al. Involvement of heat shock protein a4/apg-2 in refractory inflammatory bowel disease. Inflamm. Bowel. Dis. 2015;21:31–39. doi: 10.1097/MIB.0000000000000244. PubMed DOI PMC
Weder B., Mozaffari M., Biedermann L., Mamie C., Moncsek A., Wang L., Clarke S.H., Rogler G., McRae B.L., Graff C.L., et al. BCL-2 levels do not predict azathioprine treatment response in inflammatory bowel disease, but inhibition induces lymphocyte apoptosis and ameliorates colitis in mice. Clin. Exp. Immunol. 2018;193:346–360. doi: 10.1111/cei.13151. PubMed DOI PMC
Bäumler A., Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535:85–93. doi: 10.1038/nature18849. PubMed DOI PMC