• This record comes from PubMed

Isocyanide Multicomponent Reactions on Solid Phase: State of the Art and Future Application

. 2020 Dec 01 ; 21 (23) : . [epub] 20201201

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Drug discovery efforts largely depend on access to structural diversity. Multicomponent reactions allow for time-efficient chemical transformations and provide advanced intermediates with three or four points of diversification for further expansion to a structural variety of organic molecules. This review is aimed at solid-phase syntheses of small molecules involving isocyanide-based multicomponent reactions. The majority of all reported syntheses employ the Ugi four-component reaction. The review also covers the Passerini and Groebke-Blackburn-Bienaymé reactions. To date, the main advantages of the solid-phase approach are the ability to prepare chemical libraries intended for biological screening and elimination of the isocyanide odor. However, the potential of multicomponent reactions has not been fully exploited. The unexplored avenues of these reactions, including chiral frameworks, DNA-encoded libraries, eco-friendly synthesis, and chiral auxiliary reactions, are briefly outlined.

See more in PubMed

Hulme C., Ma L., Cherrier M.P., Romano J.J., Morton G., Duquenne C., Salvino J., Labaudiniere R. Novel applications of convertible isonitriles for the synthesis of mono and bicyclic γ-lactams via a UDC strategy. Tetrahedron Lett. 2000;41:1883–1887. doi: 10.1016/S0040-4039(00)00052-6. DOI

Kim S.W., Bauer S.M., Armstrong R.W. Construction of combinatorial chemical libraries using a rapid and efficient solid phase synthesis based on a multicomponent condensation reaction. Tetrahedron Lett. 1998;39:6993–6996. doi: 10.1016/S0040-4039(98)01547-0. DOI

Lee D., Sello J.K., Schreiber S.L. Pairwise Use of Complexity-Generating Reactions in Diversity-Oriented Organic Synthesis. Org. Lett. 2000;2:709–712. doi: 10.1021/ol005574n. PubMed DOI

Hulme C., Ma L., Kumar N.V., Krolikowski P.H., Allen A.C., Labaudiniere R. Novel applications of resin bound α-amino acids for the synthesis of benzodiazepines (via Wang resin) and ketopiperazines (via hydroxymethyl resin) Tetrahedron Lett. 2000;41:1509–1514. doi: 10.1016/S0040-4039(99)02326-6. DOI

Méndez Y., De Armas G., Pérez I., Rojas T., Valdés-Tresanco M.E., Izquierdo M., Alonso del Rivero M., Álvarez-Ginarte Y.M., Valiente P.A., Soto C., et al. Discovery of potent and selective inhibitors of the Escherichia coli M1-aminopeptidase via multicomponent solid-phase synthesis of tetrazole-peptidomimetics. Eur. J. Med. Chem. 2019;163:481–499. doi: 10.1016/j.ejmech.2018.11.074. PubMed DOI

Chen J.J., Golebiowski A., Klopfenstein S.R., West L. The universal Rink-isonitrile resin: Applications in Ugi reactions. Tetrahedron Lett. 2002;43:4083–4085. doi: 10.1016/S0040-4039(02)00700-1. DOI

Ugi I. Neuere Methoden der präparativen organischen Chemie IV: Mit Sekundär-Reaktionen gekoppelte α-Additionen von Immonium-Ionen und Anionen an Isonitrile. Angew. Chem. 1962;74:9–22. doi: 10.1002/ange.19620740103. DOI

Chen J.J., Golebiowski A., McClenaghan J., Klopfenstein S.R., West L. Universal Rink-isonitrile resin: Application for the traceless synthesis of 3-acylamino imidazo[1,2-a]pyridines. Tetrahedron Lett. 2001;42:2269–2271. doi: 10.1016/S0040-4039(01)00159-9. DOI

Díaz J.L., Miguel M., Lavilla R. N-Acylazinium Salts: A New Source of Iminium Ions for Ugi-Type Processes. J. Org. Chem. 2004;69:3550–3553. doi: 10.1021/jo049823n. PubMed DOI

Banfi L., Basso A., Guanti G., Riva R. Passerini reaction—Amine Deprotection—Acyl Migration (PADAM): A convenient strategy for the solid-phase preparation of peptidomimetic compounds. Mol. Divers. 2003;6:227–235. doi: 10.1023/B:MODI.0000006778.42751.7f. PubMed DOI

Basso A., Banfi L., Riva R., Piaggio P., Guanti G. Solid-phase synthesis of modified oligopeptides via Passerini multicomponent reaction. Tetrahedron Lett. 2003;44:2367–2370. doi: 10.1016/S0040-4039(03)00238-7. DOI

Touré B.B., Hall D.G. Natural Product Synthesis Using Multicomponent Reaction Strategies. Chem. Rev. 2009;109:4439–4486. doi: 10.1021/cr800296p. PubMed DOI

Dömling A., Wang W., Wang K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev. 2012;112:3083–3135. doi: 10.1021/cr100233r. PubMed DOI PMC

Cioc R.C., Ruijter E., Orru R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2014;16:2958–2975. doi: 10.1039/C4GC00013G. DOI

Lawrenson S., North M., Peigneguy F., Routledge A. Greener solvents for solid-phase synthesis. Green Chem. 2017;19:952–962. doi: 10.1039/C6GC03147A. DOI

Reguera L., Méndez Y., Humpierre A.R., Valdés O., Rivera D.G. Multicomponent Reactions in Ligation and Bioconjugation Chemistry. Acc. Chem. Res. 2018;51:1475–1486. doi: 10.1021/acs.accounts.8b00126. PubMed DOI

Reguera L., Rivera D.G. Multicomponent Reaction Toolbox for Peptide Macrocyclization and Stapling. Chem. Rev. 2019;119:9836–9860. doi: 10.1021/acs.chemrev.8b00744. PubMed DOI

Kunig V.B.K., Ehrt C., Dömling A., Brunschweiger A. Isocyanide Multicomponent Reactions on Solid-Phase-Coupled DNA Oligonucleotides for Encoded Library Synthesis. Org. Lett. 2019;21:7238–7243. doi: 10.1021/acs.orglett.9b02448. PubMed DOI

Oertel K., Zech G., Kunz H. Stereoselective Combinatorial Ugi-Multicomponent Synthesis on Solid Phase. Angew. Chem. Int. Ed. 2000;39:1431–1433. doi: 10.1002/(SICI)1521-3773(20000417)39:8<1431::AID-ANIE1431>3.0.CO;2-N. PubMed DOI

Zech G., Kunz H. Synthesis of a Polymer-Bound Galactosylamine and Its Application as an Immobilized Chiral Auxiliary in Stereoselective Syntheses of Piperidine and Amino Acid Derivatives. Chem. Eur. J. 2004;10:4136–4149. doi: 10.1002/chem.200400253. PubMed DOI

Arcadia C.E., Kennedy E., Geiser J., Dombroski A., Oakley K., Chen S.L., Sprague L., Ozmen M., Sello J., Weber P.M., et al. Multicomponent molecular memory. Nat. Commun. 2020;11:691. doi: 10.1038/s41467-020-14455-1. PubMed DOI PMC

Ugi I. Recent progress in the chemistry of multicomponent reactions. Pure Appl. Chem. 2001;73:187–191. doi: 10.1351/pac200173010187. DOI

Dömling A., Ugi I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed. 2000;39:3168–3210. doi: 10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U. PubMed DOI

Lieke W. Ueber das Cyanallyl. Justus Liebigs Ann. Chem. 1859;112:316–321. doi: 10.1002/jlac.18591120307. DOI

Gautier A. Ueber die Einwirkung des Chlorwasserstoffs u. a. auf das Aethyl- und Methylcyanur. Justus Liebigs Ann. Chem. 1867;142:289–294. doi: 10.1002/jlac.18671420304. DOI

Ugi I., Dömling A., Gruber B., Almstetter M. Multicomponent reactions and their libraries—A New approach to preparative organic chemistry. Croat. Chem. Acta. 1997;70:631–647.

Ugi I. The α-Addition of Immonium Ions and Anions to Isonitriles Accompanied by Secondary Reactions. Angew. Chem. Int. Ed. Engl. 1962;1:8–21. doi: 10.1002/anie.196200081. DOI

Ugi I., Meyr R., Fetzer U., Steinbrückner C. Versuche mit Isonitrilen. Angew. Chem. 1959;71:386.

Arshady R., Ugi I. Solid Phase Peptide Synthesis by Four Component Condensation: Peptide Formation on an Isocyano Polymer Support. Z. Für Nat. B. 1981;36:1202–1203. doi: 10.1515/znb-1981-0933. DOI

Bienaymé H., Bouzid K. A New Heterocyclic Multicomponent Reaction for the Combinatorial Synthesis of Fused 3-Aminoimidazoles. Angew. Chem. Int. Ed. 1998;37:2234–2237. doi: 10.1002/(SICI)1521-3773(19980904)37:16<2234::AID-ANIE2234>3.0.CO;2-R. PubMed DOI

Blackburn C., Guan B., Fleming P., Shiosaki K., Tsai S. Parallel synthesis of 3-aminoimidazo[1,2–a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett. 1998;39:3635–3638. doi: 10.1016/S0040-4039(98)00653-4. DOI

Groebke K., Weber L., Mehlin F. Synthesis of Imidazo[1,2-a] Annulated Pyridines, Pyrazines, and Pyrimidines by a Novel Three-Component Condensation. Synlett. 1998;6:661–663. doi: 10.1055/s-1998-1721. DOI

La Venia A., Lemrová B., Krchňák V. Regioselective Incorporation of Backbone Constraints Compatible with Traditional Solid-Phase Peptide Synthesis. ACS Comb. Sci. 2013;15:59–72. doi: 10.1021/co300125m. PubMed DOI

Cheng J.F., Chen M., Arrhenius T., Nadzan A. A convenient solution and solid-phase synthesis of Δ5-2-oxopiperazines via N-acyliminium ions cyclization. Tetrahedron Lett. 2002;43:6293–6295. doi: 10.1016/S0040-4039(02)01403-X. DOI

Tempest P.A., Brown S.D., Armstrong R.W. Solid-Phase, Parallel Syntheses by Ugi Multicomponent Condensation. Angew. Chem. Int. Ed. Engl. 1996;35:640–642. doi: 10.1002/anie.199606401. DOI

Golebiowski A., Jozwik J., Klopfenstein S.R., Colson A.O., Grieb A.L., Russell A.F., Rastogi V.L., Diven C.F., Portlock D.E., Chen J.J. Solid-Supported Synthesis of Putative Peptide β-Turn Mimetics via Ugi Reaction for Diketopiperazine Formation. J. Comb. Chem. 2002;4:584–590. doi: 10.1021/cc020029u. PubMed DOI

Hoel A.M.L., Nielsen J. Microwave-assisted solid-phase Ugi four-component condensations. Tetrahedron Lett. 1999;40:3941–3944. doi: 10.1016/S0040-4039(99)00616-4. DOI

Lin Q., O’Neil J.C., Blackwell H.E. Small Molecule Macroarray Construction via Ugi Four-Component Reactions. Org. Lett. 2005;7:4455–4458. doi: 10.1021/ol051684o. PubMed DOI

Henkel B., Weber L. A Novel Four-Component Synthesis of N-Substituted Amino Acid Esters. Synlett. 2002:1877–1879. doi: 10.1055/s-2002-34864. DOI

Obrecht D., Abrecht C., Grieder A., Villalgordo J.M. A Novel and Efficient Approach for the Combinatorial Synthesis of Structurally Diverse Pyrimidines on solid support. Helv. Chim. Acta. 1997;80:65–72. doi: 10.1002/hlca.19970800106. DOI

Ma X., Zhou Y., Song Q. Synthesis of β-Aminoenones via Cross-Coupling of In-Situ-Generated Isocyanides with 1,3-Dicarbonyl Compounds. Org. Lett. 2018;20:4777–4781. doi: 10.1021/acs.orglett.8b01888. PubMed DOI

El Kaim L., Grimaud L., Schiltz A. “Isocyanide-free” Ugi reactions. Org. Biomol. Chem. 2009;7:3024–3026. doi: 10.1039/b908541f. DOI

Campian E., Lou B., Saneii H. Solid-phase synthesis of α-sulfonylamino amide derivatives based on Ugi-type condensation reaction using sulfonamides as amine input. Tetrahedron Lett. 2002;43:8467–8470. doi: 10.1016/S0040-4039(02)02085-3. DOI

Hanyu M., Murashima T., Miyazawa T., Yamada T. Synthesis of tripeptides containing a very crowded α-,α-disubstituted glycine with pyridine rings by solid-phase Ugi reaction. Tetrahedron Lett. 2004;45:8871–8874. doi: 10.1016/j.tetlet.2004.09.171. DOI

Habashita H., Kokubo M., Hamano S.I., Hamanaka N., Toda M., Shibayama S., Tada H., Sagawa K., Fukushima D., Maeda K., et al. Design, Synthesis, and Biological Evaluation of the Combinatorial Library with a New Spirodiketopiperazine Scaffold. Discovery of Novel Potent and Selective Low-Molecular-Weight CCR5 Antagonists. J. Med. Chem. 2006;49:4140–4152. doi: 10.1021/jm060051s. PubMed DOI

Szardenings A.K., Burkoth T.S., Lu H.H., Tien D.W., Campbell D.A. A simple procedure for the solid phase synthesis of diketopiperazine and diketomorpholine derivatives. Tetrahedron. 1997;53:6573–6593. doi: 10.1016/S0040-4020(97)00218-4. DOI

Liu Z., Nefzi A. Solid-Phase Synthesis of N-Substituted Pyrrolidinone-Tethered N-Substituted Piperidines via Ugi Reaction. J. Comb. Chem. 2010;12:566–570. doi: 10.1021/cc100054u. PubMed DOI PMC

Liu Z., Nefzi A. Ugi four-center three-component reaction for the parallel solid-phase synthesis of N-substituted thiomopholinones. Tetrahedron Lett. 2012;53:1013–1014. doi: 10.1016/j.tetlet.2011.12.074. DOI

Aguiam N.R., Castro V.I., Ribeiro A.I.F., Fernandes R.D.V., Carvalho C.M., Costa S.P.G., Pereira-Lima S.M.M.A. α-,α-Dialkylglycines obtained by solid phase Ugi reaction performed over isocyanide functionalized resins. Tetrahedron. 2013;69:9161–9165. doi: 10.1016/j.tet.2013.08.002. DOI

Zhang C., Moran E.J., Woiwode T.F., Short K.M., Mjalli A.M.M. Synthesis of tetrasubstituted imidazoles via α-(N-acyl-N-alkylamino)-β-ketoamides on Wang resin. Tetrahedron Lett. 1996;37:751–754. doi: 10.1016/0040-4039(95)02310-0. DOI

Henkel B., Sax M., Dömling A. A new and efficient multicomponent solid-phase synthesis of 2-acylaminomethylthiazoles. Tetrahedron Lett. 2003;44:3679–3682. doi: 10.1016/S0040-4039(03)00662-2. DOI

Henkel B., Westner B., Dömling A. Polymer-Bound 3-N,N-(Dimethylamino)-2-isocyanoacrylate for the Synthesis of Thiazoles via a Multicomponent Reaction. Synlett. 2003:2410–2412. doi: 10.1055/s-2003-43331. DOI

Short K.M., Ching B.W., Mjalli A.M.M. The synthesis of hydantoin 4-imides on solid support. Tetrahedron Lett. 1996;37:7489–7492. doi: 10.1016/0040-4039(96)01699-1. DOI

Short K.M., Ching B.W., Mjalli A.M.M. Exploitation of the Ugi 4CC reaction: Preparation of small molecule combinatorial libraries via solid phase. Tetrahedron. 1997;53:6653–6679. doi: 10.1016/S0040-4020(97)00223-8. DOI

Dömling A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev. 2006;106:17–89. doi: 10.1021/cr0505728. PubMed DOI

Piscopio A.D., Miller J.F., Koch K. Ring closing metathesis in organic synthesis: Evolution of a high speed, solid phase method for the preparation of β-turn mimetics. Tetrahedron. 1999;55:8189–8198. doi: 10.1016/S0040-4020(99)00300-2. DOI

Sutherlin D.P., Stark T.M., Hughes R., Armstrong R.W. Generation of C-Glycoside Peptide Ligands for Cell Surface Carbohydrate Receptors Using a Four-Component Condensation on Solid Support. J. Org. Chem. 1996;61:8350–8354. doi: 10.1021/jo960119j. PubMed DOI

Portlock D.E., Naskar D., West L., Ostaszewski R., Chen J.J. Solid-phase synthesis of five-dimensional libraries via a tandem Petasis-Ugi multi-component condensation reaction. Tetrahedron Lett. 2003;44:5121–5124. doi: 10.1016/S0040-4039(03)01119-5. DOI

Golebiowski A., Klopfenstein S.R., Shao X., Chen J.J., Colson A.O., Grieb A.L., Russell A.F. Solid-Supported Synthesis of a Peptide β-Turn Mimetic. Org. Lett. 2000;2:2615–2617. doi: 10.1021/ol006145s. PubMed DOI

Constabel F., Ugi I. Repetitive Ugi reactions. Tetrahedron. 2001;57:5785–5789. doi: 10.1016/S0040-4020(01)00516-6. DOI

Lin Q., Blackwell H.E. Rapid synthesis of diketopiperazine macroarrays via Ugi four-component reactions on planar solid supports. Chem. Commun. 2006:2884–2886. doi: 10.1039/b604329a. PubMed DOI PMC

Campbell J., Blackwell H.E. Efficient Construction of Diketopiperazine Macroarrays through a Cyclative-Cleavage Strategy and Their Evaluation as Luminescence Inhibitors in the Bacterial Symbiont Vibrio fischeri. J. Comb. Chem. 2009;11:1094–1099. doi: 10.1021/cc900115x. PubMed DOI PMC

Marcaccini S., Torroba T. The use of the Ugi four-component condensation. Nat. Protoc. 2007;2:632–639. doi: 10.1038/nprot.2007.71. PubMed DOI

Banfi L., Guanti G., Riva R., Basso A. Multicomponent Reactions in Solid-Phase Synthesis. Curr. Opin. Drug Discov. Dev. 2007;10:704–714. PubMed

Ramón D.J., Yus M. Asymmetric Multicomponent Reactions (AMCRs): The New Frontier. Angew. Chem. Int. Ed. 2005;44:1602–1634. doi: 10.1002/anie.200460548. PubMed DOI

Hlaváč J., Soural M., Krchňák V. Solid-Phase Organic Synthesis. Wiley; Hoboken, NJ, USA: 2011. Practical Aspects of Combinatorial Solid-Phase Synthesis; pp. 95–130. DOI

Wang S.-S. p-Alkoxybenzyl alcohol resin and p-alkoxybenzyloxycarbonylhydrazide resin for solid phase synthesis of protected peptide fragments. J. Am. Chem. Soc. 1973;95:1328–1333. doi: 10.1021/ja00785a052. PubMed DOI

Rink H. Solid-phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methylester resin. Tetrahedron Lett. 1987;28:3787–3790. doi: 10.1016/S0040-4039(00)96384-6. DOI

Xiaodong C., Moran E.J., Siev D., Lio A., Ohashi C., Mjalli A.M.M. Synthesis of NH-acyl-α-aminoamides on Rink resin: Inhibitors of the hematopoietic protein tyrosine phosphatase (HePTP) Bioorg. Med. Chem. Lett. 1995;5:2953–2958. doi: 10.1016/0960-894X(95)00533-6. DOI

Pulici M., Quartieri F., Felder E.R. Trifluoroacetic Anhydride-Mediated Solid-Phase Version of the Robinson-Gabriel Synthesis of Oxazoles. J. Comb. Chem. 2005;7:463–473. doi: 10.1021/cc049831h. PubMed DOI

Li Z., Yeo S.L., Pallen C.J., Ganesan A. Solid-phase synthesis of potential protein tyrosine phosphatase inhibitors via the Ugi four-component condensation. Bioorg. Med. Chem. Lett. 1998;8:2443–2446. doi: 10.1016/S0960-894X(98)00408-9. PubMed DOI

Sun D., Lee R.E. Solid-Phase Synthesis Development of a Thymidinyl and 2′-Deoxyuridinyl Ugi Library for Anti-bacterial Agent Screening. Tetrahedron Lett. 2005;46:8497–8501. doi: 10.1016/j.tetlet.2005.10.012. DOI

Henkel B., Sax M., Dömling A. New method for the preparation of solid-phase bound isocyanocarboxylic acids and Ugi reactions therewith. Tetrahedron Lett. 2003;44:7015–7018. doi: 10.1016/S0040-4039(03)01793-3. DOI

Arshady R., Ugi I. Synthesis and characterization of polymer supports carrying isocyano groups. Polymer. 1990;31:1164–1169. doi: 10.1016/0032-3861(90)90268-4. DOI

Ugi I., Rosendahl F.K., Isonitrile X.V. Δ1-Cyclohexenyl-isocyanid. Justus Liebigs Ann. Chem. 1963;666:65–67. doi: 10.1002/jlac.19636660109. DOI

Keating T.A., Armstrong R.W. Molecular Diversity via a Convertible Isocyanide in the Ugi Four-Component Condensation. J. Am. Chem. Soc. 1995;117:7842–7843. doi: 10.1021/ja00134a044. DOI

Hulme C., Morrissette M.M., Volz F.A., Burns C.J. The solution phase synthesis of diketopiperazine libraries via the Ugi reaction: Novel application of Armstrong’s convertible isonitrile. Tetrahedron Lett. 1998;39:1113–1116. doi: 10.1016/S0040-4039(97)10795-X. DOI

Keating T.A., Armstrong R.W. Postcondensation Modifications of Ugi Four-Component Condensation Products: 1-Isocyanocyclohexene as a Convertible Isocyanide. Mechanism of Conversion, Synthesis of Diverse Structures, and Demonstration of Resin Capture. J. Am. Chem. Soc. 1996;118:2574–2583. doi: 10.1021/ja953868b. DOI

Miller J.F., Koch K., Piscopio A.D. Preparation and synthetic application of an immobilized, convertible isonitrile. Abstr. Pap. Am. Chem. Soc. 1997;214:232.

Hulme C., Peng J., Morton G., Salvino J.M., Herpin T., Labaudiniere R. Novel safety-catch linker and its application with a Ugi/De-BOC/Cyclization (UDC) strategy to access carboxylic acids, 1,4-benzodiazepines, diketopiperazines, ketopiperazines and dihydroquinoxalinones. Tetrahedron Lett. 1998;39:7227–7230. doi: 10.1016/S0040-4039(98)01593-7. DOI

Kennedy A.L., Fryer A.M., Josey J.A. A New Resin-Bound Universal Isonitrile for the Ugi 4CC Reaction: Preparation and Applications to the Synthesis of 2,5-Diketopiperazines and 1,4-Benzodiazepine-2,5-diones. Org. Lett. 2002;4:1167–1170. doi: 10.1021/ol0256015. PubMed DOI

Oikawa M., Takeda Y., Sasaki M. 2-Oxo-1,2-ethylenedioxy group as a linker for solution-, liquid-, and solid-phase syntheses to discover drug-like small molecules. Tetrahedron Lett. 2005;46:4667–4670. doi: 10.1016/j.tetlet.2005.04.138. DOI

Strocker A.M., Keating T.A., Tempest P.A., Armstrong R.W. Use of a convertible isocyanide for generation of Ugi reaction derivatives on solid support: Synthesis of α-acylaminoesters and pyrroles. Tetrahedron Lett. 1996;37:1149–1152. doi: 10.1016/0040-4039(96)00012-3. DOI

Chéron N., Ramozzi R., Kaim L.E., Grimaud L., Fleurat-Lessard P. Challenging 50 Years of Established Views on Ugi Reaction: A Theoretical Approach. J. Org. Chem. 2012;77:1361–1366. doi: 10.1021/jo2021554. PubMed DOI

Holden C.M., Greaney M.F. Modern Aspects of the Smiles Rearrangement. Chem. Eur. J. 2017;23:8992–9008. doi: 10.1002/chem.201700353. PubMed DOI

Dömling A., Ugi I. The Seven-Component Reaction. Angew. Chem. Int. Ed. Engl. 1993;32:563–564. doi: 10.1002/anie.199305631. DOI

Pirrung M.C., Sarma K.D. Multicomponent Reactions Are Accelerated in Water. J. Am. Chem. Soc. 2004;126:444–445. doi: 10.1021/ja038583a. PubMed DOI

Gil C., Brase S. Traceless and multifunctional linkers for the generation of small molecules on solid supports. Curr. Opin. Chem. Biol. 2004;8:230–237. doi: 10.1016/j.cbpa.2004.04.004. PubMed DOI

Wiehn M.S., Jung N., Brase S. Safety-catch and traceless linkers in solid phase organic synthesis. In: Tulla-Puche J., Albericio F., editors. Power Functional Resins in Organic Synthesis. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2008. pp. 437–465.

Cankařová N., Schütznerová E., Krchňák V. Traceless Solid-Phase Organic Synthesis. Chem. Rev. 2019;119:12089–12207. doi: 10.1021/acs.chemrev.9b00465. PubMed DOI

Nixey T., Tempest P., Hulme C. Two-step solution-phase synthesis of novel quinoxalinones utilizing a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett. 2002;43:1637–1639. doi: 10.1016/S0040-4039(02)00101-6. DOI

Scott B.O., Siegmund A.C., Marlowe C.K., Pei Y., Spear K.L. Solid phase organic synthesis (SPOS): A novel route to diketopiperazines and diketomorpholines. Mol. Divers. 1996;1:125–134. doi: 10.1007/BF01721328. PubMed DOI

Mjalli A.M.M., Sarshar S., Baiga T.J. Solid phase synthesis of pyrroles derived from a four component condensation. Tetrahedron Lett. 1996;37:2943–2946. doi: 10.1016/0040-4039(96)00365-6. DOI

Nahm S., Weinreb S.M. N-methoxy-N-methylamides as effective acylating agents. Tetrahedron Lett. 1981;22:3815–3818. doi: 10.1016/S0040-4039(01)91316-4. DOI

Dinh T.Q., Armstrong R.W. Synthesis of ketones and aldehydes via reactions of Weinreb-type amides on solid support. Tetrahedron Lett. 1996;37:1161–1164. doi: 10.1016/0040-4039(95)02400-X. DOI

Paulvannan K. Preparation of tricyclic nitrogen heterocycles via tandem four-component condensation/intramolecular Diels-Alder reaction. Tetrahedron Lett. 1999;40:1851–1854. doi: 10.1016/S0040-4039(99)00072-6. DOI

Hulme C., Peng J., Louridas B., Menard P., Krolikowski P., Kumar N.V. Applications of N-BOC-diamines for the solution phase synthesis of ketopiperazine libraries utilizing a Ugi/De-BOC/Cyclization (UDC) strategy. Tetrahedron Lett. 1998;39:8047–8050. doi: 10.1016/S0040-4039(98)01770-5. DOI

Kolb J., Beck B., Almstetter M., Heck S., Herdtweck E., Dömling A. New MCRs: The first 4-component reaction leading to 2,4-disubstituted thiazoles. Mol. Divers. 2003;6:297–313. doi: 10.1023/B:MODI.0000006827.35029.e4. PubMed DOI

Heck S., Domling A. A Versatile Multi-Component One-Pot Thiazole Synthesis. Synlett. 2000:424–426. doi: 10.1055/s-2000-6517. DOI

Schöllkopf U., Porsch P.H., Lau H.H. Synthesen mit α-metallierten Isocyaniden, XLIV. Notiz über β-Dimethylamino-α-isocyanacrylsäureester und ihre Verwendung in der Heterocyclenchemie. Liebigs Ann. Chem. 1979:1444–1446. doi: 10.1002/jlac.197919790918. DOI

Mckervey M.A., O’Sullivan M.B., Myers P.L., Green R.H. Reductive acylation of α-keto azides derived from L-amino acids using N-protected L-aminothiocarboxylic S-acids. J. Chem. Soc. Chem. Commun. 1993:94–96. doi: 10.1039/C39930000094. DOI

Venkatraman J., Shankaramma S.C., Balaram P. Design of Folded Peptides. Chem. Rev. 2001;101:3131–3152. doi: 10.1021/cr000053z. PubMed DOI

Boltjes A., Dömling A. The Groebke-Blackburn-Bienaymé Reaction. Eur. J. Org. Chem. 2019:7007–7049. doi: 10.1002/ejoc.201901124. PubMed DOI PMC

Gunawan S., Hulme C. Construction of functionalized tricyclic dihydropyrazino-quinazolinedione chemotypes via an Ugi/N-acyliminium ion cyclization cascade. Tetrahedron Lett. 2013;54:4467–4470. doi: 10.1016/j.tetlet.2013.06.042. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...