Isocyanide Multicomponent Reactions on Solid Phase: State of the Art and Future Application
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
33271974
PubMed Central
PMC7729642
DOI
10.3390/ijms21239160
PII: ijms21239160
Knihovny.cz E-resources
- Keywords
- Ugi four-component reaction, convertible isocyanides, drug discovery, multicomponent reactions, post-Ugi transformations, solid-phase synthesis,
- MeSH
- Cyanides chemical synthesis chemistry MeSH
- Drug Discovery * methods MeSH
- Resins, Synthetic chemistry MeSH
- Chemistry Techniques, Synthetic * MeSH
- Solid-Phase Synthesis Techniques * methods MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Cyanides MeSH
- Resins, Synthetic MeSH
Drug discovery efforts largely depend on access to structural diversity. Multicomponent reactions allow for time-efficient chemical transformations and provide advanced intermediates with three or four points of diversification for further expansion to a structural variety of organic molecules. This review is aimed at solid-phase syntheses of small molecules involving isocyanide-based multicomponent reactions. The majority of all reported syntheses employ the Ugi four-component reaction. The review also covers the Passerini and Groebke-Blackburn-Bienaymé reactions. To date, the main advantages of the solid-phase approach are the ability to prepare chemical libraries intended for biological screening and elimination of the isocyanide odor. However, the potential of multicomponent reactions has not been fully exploited. The unexplored avenues of these reactions, including chiral frameworks, DNA-encoded libraries, eco-friendly synthesis, and chiral auxiliary reactions, are briefly outlined.
See more in PubMed
Hulme C., Ma L., Cherrier M.P., Romano J.J., Morton G., Duquenne C., Salvino J., Labaudiniere R. Novel applications of convertible isonitriles for the synthesis of mono and bicyclic γ-lactams via a UDC strategy. Tetrahedron Lett. 2000;41:1883–1887. doi: 10.1016/S0040-4039(00)00052-6. DOI
Kim S.W., Bauer S.M., Armstrong R.W. Construction of combinatorial chemical libraries using a rapid and efficient solid phase synthesis based on a multicomponent condensation reaction. Tetrahedron Lett. 1998;39:6993–6996. doi: 10.1016/S0040-4039(98)01547-0. DOI
Lee D., Sello J.K., Schreiber S.L. Pairwise Use of Complexity-Generating Reactions in Diversity-Oriented Organic Synthesis. Org. Lett. 2000;2:709–712. doi: 10.1021/ol005574n. PubMed DOI
Hulme C., Ma L., Kumar N.V., Krolikowski P.H., Allen A.C., Labaudiniere R. Novel applications of resin bound α-amino acids for the synthesis of benzodiazepines (via Wang resin) and ketopiperazines (via hydroxymethyl resin) Tetrahedron Lett. 2000;41:1509–1514. doi: 10.1016/S0040-4039(99)02326-6. DOI
Méndez Y., De Armas G., Pérez I., Rojas T., Valdés-Tresanco M.E., Izquierdo M., Alonso del Rivero M., Álvarez-Ginarte Y.M., Valiente P.A., Soto C., et al. Discovery of potent and selective inhibitors of the Escherichia coli M1-aminopeptidase via multicomponent solid-phase synthesis of tetrazole-peptidomimetics. Eur. J. Med. Chem. 2019;163:481–499. doi: 10.1016/j.ejmech.2018.11.074. PubMed DOI
Chen J.J., Golebiowski A., Klopfenstein S.R., West L. The universal Rink-isonitrile resin: Applications in Ugi reactions. Tetrahedron Lett. 2002;43:4083–4085. doi: 10.1016/S0040-4039(02)00700-1. DOI
Ugi I. Neuere Methoden der präparativen organischen Chemie IV: Mit Sekundär-Reaktionen gekoppelte α-Additionen von Immonium-Ionen und Anionen an Isonitrile. Angew. Chem. 1962;74:9–22. doi: 10.1002/ange.19620740103. DOI
Chen J.J., Golebiowski A., McClenaghan J., Klopfenstein S.R., West L. Universal Rink-isonitrile resin: Application for the traceless synthesis of 3-acylamino imidazo[1,2-a]pyridines. Tetrahedron Lett. 2001;42:2269–2271. doi: 10.1016/S0040-4039(01)00159-9. DOI
Díaz J.L., Miguel M., Lavilla R. N-Acylazinium Salts: A New Source of Iminium Ions for Ugi-Type Processes. J. Org. Chem. 2004;69:3550–3553. doi: 10.1021/jo049823n. PubMed DOI
Banfi L., Basso A., Guanti G., Riva R. Passerini reaction—Amine Deprotection—Acyl Migration (PADAM): A convenient strategy for the solid-phase preparation of peptidomimetic compounds. Mol. Divers. 2003;6:227–235. doi: 10.1023/B:MODI.0000006778.42751.7f. PubMed DOI
Basso A., Banfi L., Riva R., Piaggio P., Guanti G. Solid-phase synthesis of modified oligopeptides via Passerini multicomponent reaction. Tetrahedron Lett. 2003;44:2367–2370. doi: 10.1016/S0040-4039(03)00238-7. DOI
Touré B.B., Hall D.G. Natural Product Synthesis Using Multicomponent Reaction Strategies. Chem. Rev. 2009;109:4439–4486. doi: 10.1021/cr800296p. PubMed DOI
Dömling A., Wang W., Wang K. Chemistry and Biology of Multicomponent Reactions. Chem. Rev. 2012;112:3083–3135. doi: 10.1021/cr100233r. PubMed DOI PMC
Cioc R.C., Ruijter E., Orru R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2014;16:2958–2975. doi: 10.1039/C4GC00013G. DOI
Lawrenson S., North M., Peigneguy F., Routledge A. Greener solvents for solid-phase synthesis. Green Chem. 2017;19:952–962. doi: 10.1039/C6GC03147A. DOI
Reguera L., Méndez Y., Humpierre A.R., Valdés O., Rivera D.G. Multicomponent Reactions in Ligation and Bioconjugation Chemistry. Acc. Chem. Res. 2018;51:1475–1486. doi: 10.1021/acs.accounts.8b00126. PubMed DOI
Reguera L., Rivera D.G. Multicomponent Reaction Toolbox for Peptide Macrocyclization and Stapling. Chem. Rev. 2019;119:9836–9860. doi: 10.1021/acs.chemrev.8b00744. PubMed DOI
Kunig V.B.K., Ehrt C., Dömling A., Brunschweiger A. Isocyanide Multicomponent Reactions on Solid-Phase-Coupled DNA Oligonucleotides for Encoded Library Synthesis. Org. Lett. 2019;21:7238–7243. doi: 10.1021/acs.orglett.9b02448. PubMed DOI
Oertel K., Zech G., Kunz H. Stereoselective Combinatorial Ugi-Multicomponent Synthesis on Solid Phase. Angew. Chem. Int. Ed. 2000;39:1431–1433. doi: 10.1002/(SICI)1521-3773(20000417)39:8<1431::AID-ANIE1431>3.0.CO;2-N. PubMed DOI
Zech G., Kunz H. Synthesis of a Polymer-Bound Galactosylamine and Its Application as an Immobilized Chiral Auxiliary in Stereoselective Syntheses of Piperidine and Amino Acid Derivatives. Chem. Eur. J. 2004;10:4136–4149. doi: 10.1002/chem.200400253. PubMed DOI
Arcadia C.E., Kennedy E., Geiser J., Dombroski A., Oakley K., Chen S.L., Sprague L., Ozmen M., Sello J., Weber P.M., et al. Multicomponent molecular memory. Nat. Commun. 2020;11:691. doi: 10.1038/s41467-020-14455-1. PubMed DOI PMC
Ugi I. Recent progress in the chemistry of multicomponent reactions. Pure Appl. Chem. 2001;73:187–191. doi: 10.1351/pac200173010187. DOI
Dömling A., Ugi I. Multicomponent Reactions with Isocyanides. Angew. Chem. Int. Ed. 2000;39:3168–3210. doi: 10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U. PubMed DOI
Lieke W. Ueber das Cyanallyl. Justus Liebigs Ann. Chem. 1859;112:316–321. doi: 10.1002/jlac.18591120307. DOI
Gautier A. Ueber die Einwirkung des Chlorwasserstoffs u. a. auf das Aethyl- und Methylcyanur. Justus Liebigs Ann. Chem. 1867;142:289–294. doi: 10.1002/jlac.18671420304. DOI
Ugi I., Dömling A., Gruber B., Almstetter M. Multicomponent reactions and their libraries—A New approach to preparative organic chemistry. Croat. Chem. Acta. 1997;70:631–647.
Ugi I. The α-Addition of Immonium Ions and Anions to Isonitriles Accompanied by Secondary Reactions. Angew. Chem. Int. Ed. Engl. 1962;1:8–21. doi: 10.1002/anie.196200081. DOI
Ugi I., Meyr R., Fetzer U., Steinbrückner C. Versuche mit Isonitrilen. Angew. Chem. 1959;71:386.
Arshady R., Ugi I. Solid Phase Peptide Synthesis by Four Component Condensation: Peptide Formation on an Isocyano Polymer Support. Z. Für Nat. B. 1981;36:1202–1203. doi: 10.1515/znb-1981-0933. DOI
Bienaymé H., Bouzid K. A New Heterocyclic Multicomponent Reaction for the Combinatorial Synthesis of Fused 3-Aminoimidazoles. Angew. Chem. Int. Ed. 1998;37:2234–2237. doi: 10.1002/(SICI)1521-3773(19980904)37:16<2234::AID-ANIE2234>3.0.CO;2-R. PubMed DOI
Blackburn C., Guan B., Fleming P., Shiosaki K., Tsai S. Parallel synthesis of 3-aminoimidazo[1,2–a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett. 1998;39:3635–3638. doi: 10.1016/S0040-4039(98)00653-4. DOI
Groebke K., Weber L., Mehlin F. Synthesis of Imidazo[1,2-a] Annulated Pyridines, Pyrazines, and Pyrimidines by a Novel Three-Component Condensation. Synlett. 1998;6:661–663. doi: 10.1055/s-1998-1721. DOI
La Venia A., Lemrová B., Krchňák V. Regioselective Incorporation of Backbone Constraints Compatible with Traditional Solid-Phase Peptide Synthesis. ACS Comb. Sci. 2013;15:59–72. doi: 10.1021/co300125m. PubMed DOI
Cheng J.F., Chen M., Arrhenius T., Nadzan A. A convenient solution and solid-phase synthesis of Δ5-2-oxopiperazines via N-acyliminium ions cyclization. Tetrahedron Lett. 2002;43:6293–6295. doi: 10.1016/S0040-4039(02)01403-X. DOI
Tempest P.A., Brown S.D., Armstrong R.W. Solid-Phase, Parallel Syntheses by Ugi Multicomponent Condensation. Angew. Chem. Int. Ed. Engl. 1996;35:640–642. doi: 10.1002/anie.199606401. DOI
Golebiowski A., Jozwik J., Klopfenstein S.R., Colson A.O., Grieb A.L., Russell A.F., Rastogi V.L., Diven C.F., Portlock D.E., Chen J.J. Solid-Supported Synthesis of Putative Peptide β-Turn Mimetics via Ugi Reaction for Diketopiperazine Formation. J. Comb. Chem. 2002;4:584–590. doi: 10.1021/cc020029u. PubMed DOI
Hoel A.M.L., Nielsen J. Microwave-assisted solid-phase Ugi four-component condensations. Tetrahedron Lett. 1999;40:3941–3944. doi: 10.1016/S0040-4039(99)00616-4. DOI
Lin Q., O’Neil J.C., Blackwell H.E. Small Molecule Macroarray Construction via Ugi Four-Component Reactions. Org. Lett. 2005;7:4455–4458. doi: 10.1021/ol051684o. PubMed DOI
Henkel B., Weber L. A Novel Four-Component Synthesis of N-Substituted Amino Acid Esters. Synlett. 2002:1877–1879. doi: 10.1055/s-2002-34864. DOI
Obrecht D., Abrecht C., Grieder A., Villalgordo J.M. A Novel and Efficient Approach for the Combinatorial Synthesis of Structurally Diverse Pyrimidines on solid support. Helv. Chim. Acta. 1997;80:65–72. doi: 10.1002/hlca.19970800106. DOI
Ma X., Zhou Y., Song Q. Synthesis of β-Aminoenones via Cross-Coupling of In-Situ-Generated Isocyanides with 1,3-Dicarbonyl Compounds. Org. Lett. 2018;20:4777–4781. doi: 10.1021/acs.orglett.8b01888. PubMed DOI
El Kaim L., Grimaud L., Schiltz A. “Isocyanide-free” Ugi reactions. Org. Biomol. Chem. 2009;7:3024–3026. doi: 10.1039/b908541f. DOI
Campian E., Lou B., Saneii H. Solid-phase synthesis of α-sulfonylamino amide derivatives based on Ugi-type condensation reaction using sulfonamides as amine input. Tetrahedron Lett. 2002;43:8467–8470. doi: 10.1016/S0040-4039(02)02085-3. DOI
Hanyu M., Murashima T., Miyazawa T., Yamada T. Synthesis of tripeptides containing a very crowded α-,α-disubstituted glycine with pyridine rings by solid-phase Ugi reaction. Tetrahedron Lett. 2004;45:8871–8874. doi: 10.1016/j.tetlet.2004.09.171. DOI
Habashita H., Kokubo M., Hamano S.I., Hamanaka N., Toda M., Shibayama S., Tada H., Sagawa K., Fukushima D., Maeda K., et al. Design, Synthesis, and Biological Evaluation of the Combinatorial Library with a New Spirodiketopiperazine Scaffold. Discovery of Novel Potent and Selective Low-Molecular-Weight CCR5 Antagonists. J. Med. Chem. 2006;49:4140–4152. doi: 10.1021/jm060051s. PubMed DOI
Szardenings A.K., Burkoth T.S., Lu H.H., Tien D.W., Campbell D.A. A simple procedure for the solid phase synthesis of diketopiperazine and diketomorpholine derivatives. Tetrahedron. 1997;53:6573–6593. doi: 10.1016/S0040-4020(97)00218-4. DOI
Liu Z., Nefzi A. Solid-Phase Synthesis of N-Substituted Pyrrolidinone-Tethered N-Substituted Piperidines via Ugi Reaction. J. Comb. Chem. 2010;12:566–570. doi: 10.1021/cc100054u. PubMed DOI PMC
Liu Z., Nefzi A. Ugi four-center three-component reaction for the parallel solid-phase synthesis of N-substituted thiomopholinones. Tetrahedron Lett. 2012;53:1013–1014. doi: 10.1016/j.tetlet.2011.12.074. DOI
Aguiam N.R., Castro V.I., Ribeiro A.I.F., Fernandes R.D.V., Carvalho C.M., Costa S.P.G., Pereira-Lima S.M.M.A. α-,α-Dialkylglycines obtained by solid phase Ugi reaction performed over isocyanide functionalized resins. Tetrahedron. 2013;69:9161–9165. doi: 10.1016/j.tet.2013.08.002. DOI
Zhang C., Moran E.J., Woiwode T.F., Short K.M., Mjalli A.M.M. Synthesis of tetrasubstituted imidazoles via α-(N-acyl-N-alkylamino)-β-ketoamides on Wang resin. Tetrahedron Lett. 1996;37:751–754. doi: 10.1016/0040-4039(95)02310-0. DOI
Henkel B., Sax M., Dömling A. A new and efficient multicomponent solid-phase synthesis of 2-acylaminomethylthiazoles. Tetrahedron Lett. 2003;44:3679–3682. doi: 10.1016/S0040-4039(03)00662-2. DOI
Henkel B., Westner B., Dömling A. Polymer-Bound 3-N,N-(Dimethylamino)-2-isocyanoacrylate for the Synthesis of Thiazoles via a Multicomponent Reaction. Synlett. 2003:2410–2412. doi: 10.1055/s-2003-43331. DOI
Short K.M., Ching B.W., Mjalli A.M.M. The synthesis of hydantoin 4-imides on solid support. Tetrahedron Lett. 1996;37:7489–7492. doi: 10.1016/0040-4039(96)01699-1. DOI
Short K.M., Ching B.W., Mjalli A.M.M. Exploitation of the Ugi 4CC reaction: Preparation of small molecule combinatorial libraries via solid phase. Tetrahedron. 1997;53:6653–6679. doi: 10.1016/S0040-4020(97)00223-8. DOI
Dömling A. Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev. 2006;106:17–89. doi: 10.1021/cr0505728. PubMed DOI
Piscopio A.D., Miller J.F., Koch K. Ring closing metathesis in organic synthesis: Evolution of a high speed, solid phase method for the preparation of β-turn mimetics. Tetrahedron. 1999;55:8189–8198. doi: 10.1016/S0040-4020(99)00300-2. DOI
Sutherlin D.P., Stark T.M., Hughes R., Armstrong R.W. Generation of C-Glycoside Peptide Ligands for Cell Surface Carbohydrate Receptors Using a Four-Component Condensation on Solid Support. J. Org. Chem. 1996;61:8350–8354. doi: 10.1021/jo960119j. PubMed DOI
Portlock D.E., Naskar D., West L., Ostaszewski R., Chen J.J. Solid-phase synthesis of five-dimensional libraries via a tandem Petasis-Ugi multi-component condensation reaction. Tetrahedron Lett. 2003;44:5121–5124. doi: 10.1016/S0040-4039(03)01119-5. DOI
Golebiowski A., Klopfenstein S.R., Shao X., Chen J.J., Colson A.O., Grieb A.L., Russell A.F. Solid-Supported Synthesis of a Peptide β-Turn Mimetic. Org. Lett. 2000;2:2615–2617. doi: 10.1021/ol006145s. PubMed DOI
Constabel F., Ugi I. Repetitive Ugi reactions. Tetrahedron. 2001;57:5785–5789. doi: 10.1016/S0040-4020(01)00516-6. DOI
Lin Q., Blackwell H.E. Rapid synthesis of diketopiperazine macroarrays via Ugi four-component reactions on planar solid supports. Chem. Commun. 2006:2884–2886. doi: 10.1039/b604329a. PubMed DOI PMC
Campbell J., Blackwell H.E. Efficient Construction of Diketopiperazine Macroarrays through a Cyclative-Cleavage Strategy and Their Evaluation as Luminescence Inhibitors in the Bacterial Symbiont Vibrio fischeri. J. Comb. Chem. 2009;11:1094–1099. doi: 10.1021/cc900115x. PubMed DOI PMC
Marcaccini S., Torroba T. The use of the Ugi four-component condensation. Nat. Protoc. 2007;2:632–639. doi: 10.1038/nprot.2007.71. PubMed DOI
Banfi L., Guanti G., Riva R., Basso A. Multicomponent Reactions in Solid-Phase Synthesis. Curr. Opin. Drug Discov. Dev. 2007;10:704–714. PubMed
Ramón D.J., Yus M. Asymmetric Multicomponent Reactions (AMCRs): The New Frontier. Angew. Chem. Int. Ed. 2005;44:1602–1634. doi: 10.1002/anie.200460548. PubMed DOI
Hlaváč J., Soural M., Krchňák V. Solid-Phase Organic Synthesis. Wiley; Hoboken, NJ, USA: 2011. Practical Aspects of Combinatorial Solid-Phase Synthesis; pp. 95–130. DOI
Wang S.-S. p-Alkoxybenzyl alcohol resin and p-alkoxybenzyloxycarbonylhydrazide resin for solid phase synthesis of protected peptide fragments. J. Am. Chem. Soc. 1973;95:1328–1333. doi: 10.1021/ja00785a052. PubMed DOI
Rink H. Solid-phase synthesis of protected peptide fragments using a trialkoxy-diphenyl-methylester resin. Tetrahedron Lett. 1987;28:3787–3790. doi: 10.1016/S0040-4039(00)96384-6. DOI
Xiaodong C., Moran E.J., Siev D., Lio A., Ohashi C., Mjalli A.M.M. Synthesis of NH-acyl-α-aminoamides on Rink resin: Inhibitors of the hematopoietic protein tyrosine phosphatase (HePTP) Bioorg. Med. Chem. Lett. 1995;5:2953–2958. doi: 10.1016/0960-894X(95)00533-6. DOI
Pulici M., Quartieri F., Felder E.R. Trifluoroacetic Anhydride-Mediated Solid-Phase Version of the Robinson-Gabriel Synthesis of Oxazoles. J. Comb. Chem. 2005;7:463–473. doi: 10.1021/cc049831h. PubMed DOI
Li Z., Yeo S.L., Pallen C.J., Ganesan A. Solid-phase synthesis of potential protein tyrosine phosphatase inhibitors via the Ugi four-component condensation. Bioorg. Med. Chem. Lett. 1998;8:2443–2446. doi: 10.1016/S0960-894X(98)00408-9. PubMed DOI
Sun D., Lee R.E. Solid-Phase Synthesis Development of a Thymidinyl and 2′-Deoxyuridinyl Ugi Library for Anti-bacterial Agent Screening. Tetrahedron Lett. 2005;46:8497–8501. doi: 10.1016/j.tetlet.2005.10.012. DOI
Henkel B., Sax M., Dömling A. New method for the preparation of solid-phase bound isocyanocarboxylic acids and Ugi reactions therewith. Tetrahedron Lett. 2003;44:7015–7018. doi: 10.1016/S0040-4039(03)01793-3. DOI
Arshady R., Ugi I. Synthesis and characterization of polymer supports carrying isocyano groups. Polymer. 1990;31:1164–1169. doi: 10.1016/0032-3861(90)90268-4. DOI
Ugi I., Rosendahl F.K., Isonitrile X.V. Δ1-Cyclohexenyl-isocyanid. Justus Liebigs Ann. Chem. 1963;666:65–67. doi: 10.1002/jlac.19636660109. DOI
Keating T.A., Armstrong R.W. Molecular Diversity via a Convertible Isocyanide in the Ugi Four-Component Condensation. J. Am. Chem. Soc. 1995;117:7842–7843. doi: 10.1021/ja00134a044. DOI
Hulme C., Morrissette M.M., Volz F.A., Burns C.J. The solution phase synthesis of diketopiperazine libraries via the Ugi reaction: Novel application of Armstrong’s convertible isonitrile. Tetrahedron Lett. 1998;39:1113–1116. doi: 10.1016/S0040-4039(97)10795-X. DOI
Keating T.A., Armstrong R.W. Postcondensation Modifications of Ugi Four-Component Condensation Products: 1-Isocyanocyclohexene as a Convertible Isocyanide. Mechanism of Conversion, Synthesis of Diverse Structures, and Demonstration of Resin Capture. J. Am. Chem. Soc. 1996;118:2574–2583. doi: 10.1021/ja953868b. DOI
Miller J.F., Koch K., Piscopio A.D. Preparation and synthetic application of an immobilized, convertible isonitrile. Abstr. Pap. Am. Chem. Soc. 1997;214:232.
Hulme C., Peng J., Morton G., Salvino J.M., Herpin T., Labaudiniere R. Novel safety-catch linker and its application with a Ugi/De-BOC/Cyclization (UDC) strategy to access carboxylic acids, 1,4-benzodiazepines, diketopiperazines, ketopiperazines and dihydroquinoxalinones. Tetrahedron Lett. 1998;39:7227–7230. doi: 10.1016/S0040-4039(98)01593-7. DOI
Kennedy A.L., Fryer A.M., Josey J.A. A New Resin-Bound Universal Isonitrile for the Ugi 4CC Reaction: Preparation and Applications to the Synthesis of 2,5-Diketopiperazines and 1,4-Benzodiazepine-2,5-diones. Org. Lett. 2002;4:1167–1170. doi: 10.1021/ol0256015. PubMed DOI
Oikawa M., Takeda Y., Sasaki M. 2-Oxo-1,2-ethylenedioxy group as a linker for solution-, liquid-, and solid-phase syntheses to discover drug-like small molecules. Tetrahedron Lett. 2005;46:4667–4670. doi: 10.1016/j.tetlet.2005.04.138. DOI
Strocker A.M., Keating T.A., Tempest P.A., Armstrong R.W. Use of a convertible isocyanide for generation of Ugi reaction derivatives on solid support: Synthesis of α-acylaminoesters and pyrroles. Tetrahedron Lett. 1996;37:1149–1152. doi: 10.1016/0040-4039(96)00012-3. DOI
Chéron N., Ramozzi R., Kaim L.E., Grimaud L., Fleurat-Lessard P. Challenging 50 Years of Established Views on Ugi Reaction: A Theoretical Approach. J. Org. Chem. 2012;77:1361–1366. doi: 10.1021/jo2021554. PubMed DOI
Holden C.M., Greaney M.F. Modern Aspects of the Smiles Rearrangement. Chem. Eur. J. 2017;23:8992–9008. doi: 10.1002/chem.201700353. PubMed DOI
Dömling A., Ugi I. The Seven-Component Reaction. Angew. Chem. Int. Ed. Engl. 1993;32:563–564. doi: 10.1002/anie.199305631. DOI
Pirrung M.C., Sarma K.D. Multicomponent Reactions Are Accelerated in Water. J. Am. Chem. Soc. 2004;126:444–445. doi: 10.1021/ja038583a. PubMed DOI
Gil C., Brase S. Traceless and multifunctional linkers for the generation of small molecules on solid supports. Curr. Opin. Chem. Biol. 2004;8:230–237. doi: 10.1016/j.cbpa.2004.04.004. PubMed DOI
Wiehn M.S., Jung N., Brase S. Safety-catch and traceless linkers in solid phase organic synthesis. In: Tulla-Puche J., Albericio F., editors. Power Functional Resins in Organic Synthesis. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2008. pp. 437–465.
Cankařová N., Schütznerová E., Krchňák V. Traceless Solid-Phase Organic Synthesis. Chem. Rev. 2019;119:12089–12207. doi: 10.1021/acs.chemrev.9b00465. PubMed DOI
Nixey T., Tempest P., Hulme C. Two-step solution-phase synthesis of novel quinoxalinones utilizing a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett. 2002;43:1637–1639. doi: 10.1016/S0040-4039(02)00101-6. DOI
Scott B.O., Siegmund A.C., Marlowe C.K., Pei Y., Spear K.L. Solid phase organic synthesis (SPOS): A novel route to diketopiperazines and diketomorpholines. Mol. Divers. 1996;1:125–134. doi: 10.1007/BF01721328. PubMed DOI
Mjalli A.M.M., Sarshar S., Baiga T.J. Solid phase synthesis of pyrroles derived from a four component condensation. Tetrahedron Lett. 1996;37:2943–2946. doi: 10.1016/0040-4039(96)00365-6. DOI
Nahm S., Weinreb S.M. N-methoxy-N-methylamides as effective acylating agents. Tetrahedron Lett. 1981;22:3815–3818. doi: 10.1016/S0040-4039(01)91316-4. DOI
Dinh T.Q., Armstrong R.W. Synthesis of ketones and aldehydes via reactions of Weinreb-type amides on solid support. Tetrahedron Lett. 1996;37:1161–1164. doi: 10.1016/0040-4039(95)02400-X. DOI
Paulvannan K. Preparation of tricyclic nitrogen heterocycles via tandem four-component condensation/intramolecular Diels-Alder reaction. Tetrahedron Lett. 1999;40:1851–1854. doi: 10.1016/S0040-4039(99)00072-6. DOI
Hulme C., Peng J., Louridas B., Menard P., Krolikowski P., Kumar N.V. Applications of N-BOC-diamines for the solution phase synthesis of ketopiperazine libraries utilizing a Ugi/De-BOC/Cyclization (UDC) strategy. Tetrahedron Lett. 1998;39:8047–8050. doi: 10.1016/S0040-4039(98)01770-5. DOI
Kolb J., Beck B., Almstetter M., Heck S., Herdtweck E., Dömling A. New MCRs: The first 4-component reaction leading to 2,4-disubstituted thiazoles. Mol. Divers. 2003;6:297–313. doi: 10.1023/B:MODI.0000006827.35029.e4. PubMed DOI
Heck S., Domling A. A Versatile Multi-Component One-Pot Thiazole Synthesis. Synlett. 2000:424–426. doi: 10.1055/s-2000-6517. DOI
Schöllkopf U., Porsch P.H., Lau H.H. Synthesen mit α-metallierten Isocyaniden, XLIV. Notiz über β-Dimethylamino-α-isocyanacrylsäureester und ihre Verwendung in der Heterocyclenchemie. Liebigs Ann. Chem. 1979:1444–1446. doi: 10.1002/jlac.197919790918. DOI
Mckervey M.A., O’Sullivan M.B., Myers P.L., Green R.H. Reductive acylation of α-keto azides derived from L-amino acids using N-protected L-aminothiocarboxylic S-acids. J. Chem. Soc. Chem. Commun. 1993:94–96. doi: 10.1039/C39930000094. DOI
Venkatraman J., Shankaramma S.C., Balaram P. Design of Folded Peptides. Chem. Rev. 2001;101:3131–3152. doi: 10.1021/cr000053z. PubMed DOI
Boltjes A., Dömling A. The Groebke-Blackburn-Bienaymé Reaction. Eur. J. Org. Chem. 2019:7007–7049. doi: 10.1002/ejoc.201901124. PubMed DOI PMC
Gunawan S., Hulme C. Construction of functionalized tricyclic dihydropyrazino-quinazolinedione chemotypes via an Ugi/N-acyliminium ion cyclization cascade. Tetrahedron Lett. 2013;54:4467–4470. doi: 10.1016/j.tetlet.2013.06.042. PubMed DOI PMC