Characterization and flowability methods for metal powders
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LO1404
Sustainable development of ENET Centre
PubMed
33273528
PubMed Central
PMC7713240
DOI
10.1038/s41598-020-77974-3
PII: 10.1038/s41598-020-77974-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
With the rise of additive technologies, the characterization of metal powders is increasingly required. There is a need to precisely match the properties of metal powders to a specific machine and to ensure highly consistent production. Therefore, the study aims at a detailed characterization of ten metal powders (Metal powder 316 L, Zn, Sn, Al, Cu, Mn, Fe, Bronze, Ti and Mo powder), for which the particle size distribution, morphology, static and dynamic angle of repose and the effective internal friction angle (AIFE) were determined. The AIFE parameter and flow index were determined from three commonly used rotary shear devices: The computer-controlled Ring Shear Tester RST-01. pc, the Brookfield PFT Powder Flow Tester and the FT4 Powder rheometer. The results showed that the values for the device of one manufacturer did not fully correspond to the values of another one. The flow characteristics of the metal powders were quantified from the particle size distribution data, static angle of repose, and AIFE data. According to the particle size distribution and angle of repose (AOR), 50% of the tested metal powders fell into the free-flowing mode. According to the evaluation of AIFE, 20% of the samples fell into the lower area. Based on the flow indexes calculated from the measurements of the shear devices used, 100% (RST-01.pc), 70% (PFT) and 50% (FT4) of the samples were included in the free-flowing category. When comparing the results, attention should be paid not only to the nature of the material, but also to the methodology and equipment used. A comparison of methodologies revealed similarities in the changing behavior of the different metal powders. A comparison of effective angles of AIFE and static AOR was shown, and a hypothesis of the conversion relation was derived.
Zobrazit více v PubMed
Bremen S, Meiners W, Diatlov A. Selective laser melting. Laser Tech. J. 2012;9:33–38. doi: 10.1002/latj.201290018. DOI
Alimardani M, Toyserkani E, Huissoon JP, Paul CP. On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: an experimental-numerical investigation. Opt. Lasers Eng. 2009;47:1160–1168. doi: 10.1016/j.optlaseng.2009.06.010. DOI
Basalah A, Shanjani Y, Esmaeili S, Toyserkani E. Characterizations of additive manufactured porous titanium implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012;100 B:170–179. PubMed
Nandwana P, et al. Powder bed binder jet 3D printing of Inconel 718: densification, microstructural evolution and challenges☆. Curr. Opin. Solid State Mater. Sci. 2017;21:207–218. doi: 10.1016/j.cossms.2016.12.002. DOI
Segura IA, et al. Grain boundary and microstructure engineering of Inconel 690 cladding on stainless-steel 316L using electron-beam powder bed fusion additive manufacturing. J. Mater. Sci. Technol. 2019;35:351–367. doi: 10.1016/j.jmst.2018.09.059. DOI
Zhang Y, et al. Additive manufacturing of metallic materials: a review. J. Mater. Eng. Perform. 2018;27:1–13. doi: 10.1007/s11665-017-2747-y. DOI
Fayazfar H, et al. A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties. Mater. Des. 2018;144:98–128. doi: 10.1016/j.matdes.2018.02.018. DOI
Barletta, D., Poletto, M. & Santomaso, A. C. Chapter 4. Bulk powder flow characterisation techniques. In Powder Flow (eds Hare, C. et al.) (2019). 10.1039/9781788016100-00064.
Wischeropp TM, Emmelmann C, Brandt M, Pateras A. Measurement of actual powder layer height and packing density in a single layer in selective laser melting. Addit. Manuf. 2019;28:176–183.
Frykholm R, Takeda Y, Andersson BG, Carlstrom R. Solid state sintered 3-D printing component by using inkjet (binder) method. Funtai Oyobi Fummatsu Yakin/J. Jpn. Soc. Powder Powder Metall. 2016;63:421–426. doi: 10.2497/jjspm.63.421. DOI
German RM. Prediction of sintered density for bimodal powder mixtures. Metall. Trans. A. 1992;23:1455–1465. doi: 10.1007/BF02647329. DOI
Dourandish M, Godlinski D, Simchi A. 3D printing of biocompatible PM-materials. Mater. Sci. Forum. 2007;534–536:453–456. doi: 10.4028/www.scientific.net/MSF.534-536.453. DOI
Vasilenko A, Glasser BJ, Muzzio FJ. Shear and flow behavior of pharmaceutical blends—method comparison study. Powder Technol. 2011;208:628–636. doi: 10.1016/j.powtec.2010.12.031. DOI
Prescott JK, Barnum RA. On powder flowability. Pharm. Technol. 2000;24:60–84.
MiDi GDR. On dense granular flows. Eur. Phys. J. E. 2004;14:341–365. doi: 10.1140/epje/i2003-10153-0. PubMed DOI
Pleass C, Jothi S. Influence of powder characteristics and additive manufacturing process parameters on the microstructure and mechanical behaviour of Inconel 625 fabricated by Selective Laser Melting. Addit. Manuf. 2018;24:419–431.
ASTM International. Standard Test Method for Measuring the Angle of Repose of Free-Flowing Mold Powders. C 1444-00 (2000). 10.1520/C1444-00 (2000).
Massaro Sousa L, Ferreira MC. Densification behavior of dry spent coffee ground powders: experimental analysis and predictive methods. Powder Technol. 2019;357:149–157. doi: 10.1016/j.powtec.2019.08.069. DOI
Jenike, A. Storage and flow of solids, bulletin no. 123. Utah Eng. Exp. Stn. (1964).
Beakawi Al-Hashemi HM, Baghabra Al-Amoudi OS. A review on the angle of repose of granular materials. Powder Technol. 2018 doi: 10.1016/j.powtec.2018.02.003. DOI
Riley GS, Mann GR. Effects of particle shape on angles of repose and bulk densities of a granular solid. Mater. Res. Bull. 1972 doi: 10.1016/0025-5408(72)90273-5. DOI
Fraczek J, Złobecki A, Zemanek J. Assessment of angle of repose of granular plant material using computer image analysis. J. Food Eng. 2007 doi: 10.1016/j.jfoodeng.2006.11.028. DOI
Rackl M, Grötsch FE. 3D scans, angles of repose and bulk densities of 108 bulk material heaps. Sci. Data. 2018 doi: 10.1038/sdata.2018.102. PubMed DOI PMC
Nedderman, R. M. Statics and Kinematics of Granular Materials (1992). 10.1017/cbo9780511600043.
Kleinhans MG, Markies H, De Vet SJ, In’t Veld AC, Postema FN. Static and dynamic angles of repose in loose granular materials under reduced gravity. J. Geophys. Res. E Planets. 2011 doi: 10.1029/2011JE003865. DOI
Nakashima H, et al. Determining the angle of repose of sand under low-gravity conditions using discrete element method. J. Terramech. 2011 doi: 10.1016/j.jterra.2010.09.002. DOI
Schwedes J. Review on testers for measuring flow properties of bulk solids. Granul. Matter. 2003;5:1–43. doi: 10.1007/s10035-002-0124-4. DOI
Schulze, D., Schwedes, J. & Carson, J. W. Powders and Bulk Solids: Behavior, Characterization, Storage and Flow (2008). 10.1007/978-3-540-73768-1.
Rhodes, M. Introduction to Particle Technology: Second Edition. Introduction to Particle Technology: Second Edition (Wiley, Chicester, 2008). 10.1002/9780470727102.
Carson JW, Wilms H. Development of an international standard for shear testing. Powder Technol. 2006;167:1–9. doi: 10.1016/j.powtec.2006.04.005. DOI
ASTM International. D6773-02: Standard Test Method for Bulk Solids Using Schulze Ring Shear Tester 1. Annu. B. ASTM Stand. 1–26. 10.1520/D6682-08 (2010).
Leturia M, Benali M, Lagarde S, Ronga I, Saleh K. Characterization of flow properties of cohesive powders: a comparative study of traditional and new testing methods. Powder Technol. 2014;253:406–423. doi: 10.1016/j.powtec.2013.11.045. DOI
Strondl A, Lyckfeldt O, Brodin H, Ackelid U. Characterization and control of powder properties for additive manufacturing. JOM. 2015;67:549–554. doi: 10.1007/s11837-015-1304-0. DOI
Søgaard SV, Pedersen T, Allesø M, Garnaes J, Rantanen J. Evaluation of ring shear testing as a characterization method for powder flow in small-scale powder processing equipment. Int. J. Pharm. 2014;475:315–323. doi: 10.1016/j.ijpharm.2014.08.060. PubMed DOI
Clayton J, Millington-Smith D, Armstrong B. The application of powder rheology in additive manufacturing. JOM. 2015;67:544–548. doi: 10.1007/s11837-015-1293-z. DOI
Schulze D. Round robin test on ring shear testers. Adv. Powder Technol. 2011;22:197–202. doi: 10.1016/j.apt.2010.10.015. DOI
Shi H, et al. Effect of particle size and cohesion on powder yielding and flow. KONA Powder Part. J. 2018;2018:226–250. doi: 10.14356/kona.2018014. DOI
Koynov S, Glasser B, Muzzio F. Comparison of three rotational shear cell testers: powder flowability and bulk density. Powder Technol. 2015;283:103–112. doi: 10.1016/j.powtec.2015.04.027. DOI
Salehi H, Barletta D, Poletto M. A comparison between powder flow property testers. Particuology. 2017;32:10–20. doi: 10.1016/j.partic.2016.08.003. DOI
Gelnar, D., Zegzulka, J., Soos, L. & J. D. Validation device and method of static and dynamic angle of repose measurement. (2013).
Samantha SC, et al. Drying by spray drying in the food industry: Micro-encapsulation, process parameters and main carriers used. Afr. J. Food Sci. 2015;9:462–470. doi: 10.5897/AJFS2015.1279. DOI
USP. U. S. Pharmacopoeia National Formulary. In United States Pharmacopeial, 2011 (2012).
Jezerská, L., Zádrapa, F., Žurovec, D. & Zegzulka, J. Avalanching and aeration regions for glidants. In NANOCON 2017—Conference Proceedings, 9th International Conference on Nanomaterials—Research and Application vols 2017-October 781–786 (2018).
Tan JH, Wong WLE, Dalgarno KW. An overview of powder granulometry on feedstock and part performance in the selective laser melting process. Addit. Manuf. 2017 doi: 10.1016/j.addma.2017.10.011. DOI
Zegzulka J, et al. Internal friction angle of metal powders. Metals (Basel) 2018;8:255. doi: 10.3390/met8040255. DOI
Jenike A, Johanson J. Storage and flow of solids. Powder Technol. 1975;13:156. doi: 10.1016/0032-5910(75)87020-3. DOI
Mihlbachler K, Kollmann T, Seidel-Morgenstern A, Tomas J, Guiochon G. Measurement of the degree of internal friction of two native silica packing materials. J. Chromatogr. A. 1998;818:155–168. doi: 10.1016/S0021-9673(98)00546-9. DOI
Brookfield Engineering Laboratories Inc. Brookfield Powder Flow Tester: Operating Instructions, vol. 8139 (2014).
Berry RJ, Bradley MSA, McGregor RG. Brookfield powder flow tester—results of round robin tests with CRM-116 limestone powder. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2015;229:215–230. doi: 10.1177/0954408914525387. DOI
Freeman R. Measuring the flow properties of consolidated, conditioned and aerated powders—a comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007;174:25–33. doi: 10.1016/j.powtec.2006.10.016. DOI
Engeli R, Etter T, Hövel S, Wegener K. Processability of different IN738LC powder batches by selective laser melting. J. Mater. Process. Technol. 2016 doi: 10.1016/j.jmatprotec.2015.09.046. DOI
Geldart D, Abdullah EC, Hassanpour A, Nwoke LC, Wouters I. Characterization of powder flowability using measurement of angle of repose. China Particuol. 2006 doi: 10.1016/s1672-2515(07)60247-4. DOI
Farley R, Valentin FHH. Effect of particle size upon the strength of powders. Powder Technol. 1968 doi: 10.1016/0032-5910(68)80017-8. DOI
Krantz M, Zhang H, Zhu J. Characterization of powder flow: static and dynamic testing. Powder Technol. 2009 doi: 10.1016/j.powtec.2009.05.001. DOI
Macho O, et al. Analysis of static angle of repose with respect to powder material properties. Acta Polytech. 2020 doi: 10.14311/AP.2020.60.0073. DOI