Relationship of Surface and Bulk Resistivity in the Case of Mechanically Damaged Fibre Reinforced Red Ceramic Waste Aggregate Concrete
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS SP2020/120
Ministry of Education, Youth and Sports of the Czech Republic through VSB - TU Ostrava
PubMed
33276622
PubMed Central
PMC7731231
DOI
10.3390/ma13235501
PII: ma13235501
Knihovny.cz E-zdroje
- Klíčová slova
- concrete, diffusion, durability, fibre, mechanical damage, red ceramic waste aggregate, resistivity,
- Publikační typ
- časopisecké články MeSH
Electrical resistivity is an important physical property of concrete, directly related to the chloride-induced corrosion process. This paper analyses the surface resistivity (SR) and bulk resistivity (BR) of structural lightweight waste aggregate concrete (SLWAC). The studied concrete mixture contained waste material-red ceramics fine aggregate and artificial expanded clay coarse aggregate. Red ceramic is a frequent waste material remaining after the demolition of buildings or unsatisfactory building material production and is among the least used construction waste. Therefore, its use is desirable in terms of sustainability; in some cases, it can reliably replace the conventional aggregate in a concrete mixture. The relationship between SR and BR was determined in the case of standard specimens and mechanically damaged specimens (to 50% and 100% of ultimate strength capacity-USC). Two different instruments were utilised for the investigation-a 4-point Wenner probe meter and an RCON tester. The results of standard specimens support the theoretically derived correction ratio, but in the case of mechanically damaged specimens, the ratio is more scattered, which is related to the mechanical damage and the amount of fibre.
Zobrazit více v PubMed
Mehta P.K., Monteiro P.J.M. Concrete: Microstructure, Properties, and Materials. 3rd ed. McGraw-Hill; New York, NY, USA: 2006.
Assi L., Carter K., Deaver E., Anay R., Ziehl P. Sustainable concrete: Building a greener future. J. Clean. Prod. 2018;198:1641–1651. doi: 10.1016/j.jclepro.2018.07.123. DOI
Latawiec R., Woyciechowski P., Kowalski K.J. Sustainable concrete performance—CO2-emission. Environments. 2018;5:27. doi: 10.3390/environments5020027. DOI
Pizoń J., Gołaszewski J., Alwaeli M., Szwan P. Properties of Concrete with Recycled Concrete Aggregate Containing Metallurgical Sludge Waste. Materials. 2020;13:1448. doi: 10.3390/ma13061448. PubMed DOI PMC
Hornakova M., Katzer J., Kobaka J., Konecny P. Lightweight SFRC Benefitting from a Pre-Soaking and Internal Curing Process. Materials. 2019;12:4152. doi: 10.3390/ma12244152. PubMed DOI PMC
Katzer J., Kobaka J., Ponikiewski T. Influence of Crimped Steel Fibre on Properties of Concrete Based on an Aggregate Mix of Waste and Natural Aggregates. Materials. 2020;13:1906. doi: 10.3390/ma13081906. PubMed DOI PMC
Horňáková M., Lehner P., Le T.D., Konečný P., Katzer J. Durability Characteristics of Concrete Mixture Based on Red Ceramic Waste Aggregate. Sustainability. 2020;12:8890. doi: 10.3390/su12218890. DOI
Nordtest . Nordtest NT BUILD 443, Concrete, Hardened: Accelerated Chloride Penetration. Nordtest; Espoo, Finland: 1995.
Saetta A., Scotta R., Vitaliani R. Mechanical behavior of concrete under physical-chemical attacks. J. Eng. Mech. 1998;124:1100–1109. doi: 10.1061/(ASCE)0733-9399(1998)124:10(1100). DOI
Rahman M.K., Al-Kutti W.A., Shazali M.A., Baluch M.H. Simulation of Chloride Migration in Damaged Self Compacting Concrete. ASCE Mater. J. 2012;24:658–667.
Al-Kutti W.A., Shazali M.A., Rahman M.K., Baluch M.H. Enhancement in Chloride Diffusivity due to Flexural Damage in Reinforced Concrete Beams. Asce J. Mater. Civ. Eng. 2014;26:658–667. doi: 10.1061/(ASCE)MT.1943-5533.0000836. DOI
Sun J., Lu L. Coupled effect of axially distributed load and carbonization on permeability of concrete. Constr. Build. Mater. 2015;79:9–13. doi: 10.1016/j.conbuildmat.2014.09.080. DOI
Francois R., Arligue H. Effect of microcracking and cracking on the development of corrosion in reinforced concrete members. Mag. Concr. Res. 1999;51:143–150. doi: 10.1680/macr.1999.51.2.143. DOI
Jin L., Zhang R., Du X., Li Y. Multi-scale analytical theory of the diffusivity of concrete subjected to mechanical stress. Constr. Build. Mater. 2015;95:171–185. doi: 10.1016/j.conbuildmat.2015.07.123. DOI
Vořechovská D., Šomodíková M., Podroužek J., Lehký D., Teplý B. Concrete structures under combined mechanical and environmental actions: Modelling of durability and reliability. Comput. Concr. 2017;20:99–110. doi: 10.12989/cac.2017.20.1.99. DOI
Yan Y., Ling W., Wittmann F. Publications on Durability of Reinforced Concrete Strucutres under Combined Mechanical Loads ans Environemental Actions: An Annotated Bibliography. Aedificatio Verlag GmbH; Freiburg, Germany: 2013. DOI
Vořechovská D., Teplý B., Šomodíková M., Lehký D. Modelling of service life of concrete structures under combined mechanical and environmental actions; Proceedings of the Scientific Conference Modelling in Mechanics 2015 VŠB-TU, Faculty of Civil Engineering; Ostrava, Czech Republic. 28–29 May 2015; pp. 145–146.
Wang L.C. Experimental Study on Water Absorption by Concrete Damaged by Uniaxial Loading; Proceedings of the 4th International Conference on the Durability of Concrete Structures, ICDCS 2014; West Lafayette, Indiana. 23–26 July 2014; pp. 198–204.
Deng Z.H., Huang H.Q., Ye B., Wang H., Xiang P. Investigation on recycled aggregate concretes exposed to high temperature by biaxial compressive tests. Constr. Build. Mater. 2020;244:118048. doi: 10.1016/j.conbuildmat.2020.118048. DOI
Ma Z., Liu M., Tang Q., Liang C., Duan Z. Chloride permeability of recycled aggregate concrete under the coupling effect of freezing-thawing, elevated temperature or mechanical damage. Constr. Build. Mater. 2020:237. doi: 10.1016/j.conbuildmat.2019.117648. DOI
Nordtest . Nordtest NT BUILD 492. Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments. NORDTEST; Espoo, Finland: 1999.
Gudimettla J., Crawford G. Resistivity Tests for Concrete—Recent Field Experience. ACI Mater. J. 2016;113 doi: 10.14359/51688830. DOI
Lehner P., Turicová M., Konecny P. Comparison of selected methods for measurement of the concrete electrical resistance to chloride penetration. Arpn J. Eng. Appl. Sci. 2017;12:937–944.
Konecny P., Lehner P., Ponikiewski T., Miera P. Comparison of Chloride Diffusion Coefficient Evaluation Based on Electrochemical Methods. Procedia Eng. 2017;190:193–198. doi: 10.1016/j.proeng.2017.05.326. DOI
Ghosh P., Tran Q. Correlation between bulk and surface resistivity of concrete. Int. J. Concr. Struct. Mater. 2015;9:119–132. doi: 10.1007/s40069-014-0094-z. DOI
Ghosh P., Tran Q. Influence of parameters on surface resistivity of concrete. Cem. Concr. Compos. 2015;62:134–145. doi: 10.1016/j.cemconcomp.2015.06.003. DOI
Spratt R., Castro J., Nantung T., Paredes E., Weiss W.J. Variability Analysis of the Bulk Resistivity Measured Using Concrete Cylinders. Purdue University Press; West Lafayette, IN, USA: 2011.
Chatzigeorgiou G., Picandet V., Khelidj A., Pijaudier-Cabot G. Coupling between progressive damage and permeability of concrete: Analysis with a discrete model. Int. J. Numer. Anal. Methods Geomech. 2005;29:1005–1018. doi: 10.1002/nag.445. DOI
AASHTO T259-02 . Standard Method of Test for Resistance of Concrete to Chloride ion Penetration. American Association of State Highway and Transportation Officials; Washington, DC, USA: 2012.
ASTM C 1556-03 . Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion. American Society for Testing and Material; West Conshohocken, PA, USA: 2003.
AASHTO T277-07 . Standard Method of Test for Electrical Indication of Concrete’s Ability to Resist Chloride ion Penetration. American Association of State Highway and Transportation Officials; Washington, DC, USA: 2011.
ASTM C 1202-97 . Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride ion Penetration. American Society for Testing and Material; West Conshohocken, PA, USA: 1997.
AASHTO . Method of Test for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration. American Association of State Highway and Transportation Officials; Washington, DC, USA: 2011. AASHTO TP 95.
ASTM . Standard Test Method for Bulk Electrical Conductivity of Hardened Concrete. ASTM International; West Conshohocken, PA, USA: 2012. ASTM C1760-12.
Luping T., Sørensen H. Evaluation of the Rapid Test Methods for Measuring the Chloride Diffusion Coefficients of Concrete. Swedish National Testing and Research Institute Building Technology; Borås, Sweden: 1998. NORDTEST Project, No. 1388-98.
Al-Kutti W.A., Al-Akhras N.M. The Durability of Partially-Damaged Concrete with the Addition of Silica Fume and Ground Granulated Blast Furnace Slag. Key Eng. Mater. 2016;711:277–284. doi: 10.4028/www.scientific.net/KEM.711.277. DOI
RCON Giatec Scientific. Giatec Scientific Inc.; Ottawa, ON, Canada: 2013.
EN 12350-2 . Testing Fresh Concrete, Part 2: SLUMP Test. British Standard Institution; London, UK: 2009.
EN 206-1 . Performance-Based Specifications and Control of Concrete Durability. Concrete. Part 1, Specification, Performance, Production and Conformity. British Standard Institution; London, UK: 2006.
Domski J., Katzer J. Validation of Aramis Digital Image Correlation System for Tests of Fibre Concrete Based on Waste Aggregate. Key Eng. Mater. 2018;761:103–110. doi: 10.4028/www.scientific.net/KEM.761.103. DOI
Ranade R., Zhang J., Lynch J.P., Li V.C. Influence of micro-cracking on the composite resistivity of Engineered Cementitious Composites. Cem. Concr. Res. 2014;58:1–12. doi: 10.1016/j.cemconres.2014.01.002. DOI
Stanish K., Hooton D., Thomas M. Testing the Chloride Penetration Resistance of Concrete: A Literature Review. Department of Civil Engineering, University of Toronto; Toronto, ON, Canada: 1997.
Lu X. Application of the Nernst-Einstein equation to concrete. Cem. Concr. Res. 1997;27:293–302. doi: 10.1016/S0008-8846(96)00200-1. DOI
Morris W., Moreno E.I., Sagues A.A. Practical evaluation of resistivity of concrete in test cylinders using a Wenner array probe. Cem. Concr. Res. 1996;26:1779–1787. doi: 10.1016/S0008-8846(96)00175-5. DOI
Azarsa P., Gupta R. Electrical Resistivity of Concrete for Durability Evaluation: A Review. Adv. Mater. Sci. Eng. 2017;2017:8453095. doi: 10.1155/2017/8453095. DOI
Ghosh P. Ph.D. Thesis. The University of Utah; Salt Lake City, UT, USA: 2011. Computation of Diffusion Coefficients and Prediction of Corrosion Initiation in Concrete Structures.
Influence of Impregnation of Recycled Concrete Aggregate on the Selected Properties of Concrete