Influence of Impregnation of Recycled Concrete Aggregate on the Selected Properties of Concrete
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34443135
PubMed Central
PMC8398189
DOI
10.3390/ma14164611
PII: ma14164611
Knihovny.cz E-zdroje
- Klíčová slova
- compressive strength, concrete durability, freeze-thaw cycles, impregnation, recycled concrete aggregate,
- Publikační typ
- časopisecké články MeSH
The paper focuses on investigating the effect of impregnation of recycled concrete aggregate on the mechanical and durability properties of concrete using this aggregate. Cement paste, limewater and diluted water glass were used to impregnate the aggregate. Both a single impregnation and a double impregnation using two different solutions were carried out. A total of four groups of concrete series, with two values of w/c ratio (0.45 and 0.60), were made. Concrete made using the impregnated aggregate was tested and the results were compared with those of concrete made using untreated recycled aggregate of the same kind. The results indicate that impregnation of aggregate improves the mechanical properties of concrete in many cases but reduces its resistance to cyclic freezing and thawing. Furthermore, in the case of impregnation with two solutions, the order in which the impregnants are applied influences the effect obtained. Using the results received, the impregnation methods were ranked in order from best to worst. The best impregnation method proved to be with cement paste, followed by diluted water glass, while the worst results were obtained with limewater, followed by diluted water glass.
Zobrazit více v PubMed
Kubissa W., Jaskulski R., Simon T. Surface blast-cleaning waste as a replacement of fine aggregate in concrete. Arch. Civ. Eng. Environ. 2017;10:89–94. doi: 10.21307/acee-2017-038. DOI
Kubissa W., Jaskulski R. Improving of concrete tightness by using surface blast-cleaning waste as a partial replacement of fine aggregate. Period. Polytech. Civ. Eng. 2019;63:1193–1203. doi: 10.3311/PPci.14512. DOI
Saha A.K., Sarker P. Durability of Mortar Incorporating Ferronickel Slag Aggregate and Supplementary Cementitious Materials Subjected to Wet–Dry Cycles. Int. J. Concr. Struct. Mater. 2018;12:29. doi: 10.1186/s40069-018-0264-5. DOI
Khanzadi M., Behnood A. Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate. Constr. Build. Mater. 2009;23:2183–2188. doi: 10.1016/j.conbuildmat.2008.12.005. DOI
Huang B., Shu X., Burdette E.G. Mechanical properties of concrete containing recycled asphalt pavements. Mag. Concr. Res. 2006;58:313–320. doi: 10.1680/macr.2006.58.5.313. DOI
Huang B., Shu X., Li G. Laboratory investigation of portland cement concrete containing recycled asphalt pavements. Cem. Concr. Res. 2005;35:2008–2013. doi: 10.1016/j.cemconres.2005.05.002. DOI
de Brito J., Pereira A., Correia J. Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cem. Concr. Compos. 2005;27:429–433. doi: 10.1016/j.cemconcomp.2004.07.005. DOI
Senthamarai R., Manoharan P.D. Concrete with ceramic waste aggregate. Cem. Concr. Compos. 2005;27:910–913. doi: 10.1016/j.cemconcomp.2005.04.003. DOI
Seitl S., Miarka P., Šimonová H., Frantík P., Keršner Z., Domski J., Katzer J. Change of Fatigue and Mechanical Fracture Properties of a Cement Composite Due to Partial Replacement of Aggregate by Red Ceramic Waste. Period. Polytech. Civ. Eng. 2019;63:152–159. doi: 10.3311/PPci.12450. DOI
Horňáková M., Lehner P. Relationship of Surface and Bulk Resistivity in the Case of Mechanically Damaged Fibre Reinforced Red Ceramic Waste Aggregate Concrete. Materials. 2020;13:5501. doi: 10.3390/ma13235501. PubMed DOI PMC
Kubissa W., Jaskulski R., Brodňan M. Influence of SCM on the Permeability of Concrete with Recycled Aggregate. Period. Polytech. Civ. Eng. 2016;60:583–590. doi: 10.3311/PPci.8614. DOI
Kubissa W., Jaskulski R., Reiterman P. Ecological Concrete Based on Blast-Furnace Cement with Incorporated Coarse Recycled Concrete Aggregate and Fly Ash Addition. J. Renew. Mater. 2017;5:53–61. doi: 10.7569/JRM.2017.634103. DOI
Gonçalves P., de Brito J. Recycled aggregate concrete (RAC)—Comparative analysis of existing specifications. Mag. Concr. Res. 2010;62:339–346. doi: 10.1680/macr.2008.62.5.339. DOI
Kubissa W., Jaskulski R., Koper A., Supera M. High performance concrete with SCM and recycled aggregate. Key Eng. Mater. 2016;677:233–240. doi: 10.4028/www.scientific.net/KEM.677.233. DOI
The European Committee for Standardization . EN 206:2013 + A1:2016 Concrete–Specification, Performance, Production and Conformity. The European Committee for Standardization; Brussels, Belgium: 2013.
Zega C.J., Di Maio Á.A. Use of recycled fine aggregate in concretes with durable requirements. Waste Manag. 2011;31:2336–2340. doi: 10.1016/j.wasman.2011.06.011. PubMed DOI
Tam V.W.Y., Tam C.M., Le K.N. Removal of cement mortar remains from recycled aggregate using pre-soaking approaches. Resour. Conserv. Recycl. 2007;50:82–101. doi: 10.1016/j.resconrec.2006.05.012. DOI
Martirena F., Castaño T., Alujas A., Orozco-Morales R., Martinez L., Linsel S. Improving quality of coarse recycled aggregates through cement coating. J. Sustain. Cem. Mater. 2016;6:1–16. doi: 10.1080/21650373.2016.1234983. DOI
Kencanawati N.N., Akmaluddin , Merdana I.N., Nuraida N., Hadi I.R., Shigeishi M. Improving of Recycled Aggregate Quality by Thermal-mechanical-chemical Process. Procedia Eng. 2017;171:640–644. doi: 10.1016/j.proeng.2017.01.399. DOI
Tam V.W., Gao X., Tam C.M. Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. Cem. Concr. Res. 2005;35:1195–1203. doi: 10.1016/j.cemconres.2004.10.025. DOI
Kong D., Lei T., Zheng J., Ma C., Jiang J., Jiang J. Effect and mechanism of surface-coating pozzalanics materials around aggregate on properties and ITZ microstructure of recycled aggregate concrete. Constr. Build. Mater. 2010;24:701–708. doi: 10.1016/j.conbuildmat.2009.10.038. DOI
Lotfi S., Deja J., Rem P., Mróz R., van Roekel E., van der Stelt H. Mechanical recycling of EOL concrete into high-grade aggregates. Resour. Conserv. Recycl. 2014;87:117–125. doi: 10.1016/j.resconrec.2014.03.010. DOI
Ogawa H., Nawa T. Improving the Quality of Recycled Fine Aggregate by Selective Removal of Brittle Defects. J. Adv. Concr. Technol. 2012;10:395–410. doi: 10.3151/jact.10.395. DOI
Saravanakumar P., Abhiram K., Manoj B. Properties of treated recycled aggregates and its influence on concrete strength characteristics. Constr. Build. Mater. 2016;111:611–617. doi: 10.1016/j.conbuildmat.2016.02.064. DOI
Ismail S., Ramli M. Engineering properties of treated recycled concrete aggregate (RCA) for structural applications. Constr. Build. Mater. 2013;44:464–476. doi: 10.1016/j.conbuildmat.2013.03.014. DOI
Akbarnezhad A., Ong K., Zhang M., Tam C., Foo T. Microwave-assisted beneficiation of recycled concrete aggregates. Constr. Build. Mater. 2011;25:3469–3479. doi: 10.1016/j.conbuildmat.2011.03.038. DOI
Iizuka A., Nakagawa M., Kumagai K., Yamasaki A., Yanagisawa Y. Chemical Extraction and Mechanical Crushing Method for Fine Aggregate Recycling from Waste Concrete. J. Chem. Eng. Jpn. 2010;43:906–912. doi: 10.1252/jcej.09we236. DOI
Choi H., Kitagaki R., Noguchi T. Effective Recycling of Surface Modification Aggregate using Microwave Heating. J. Adv. Concr. Technol. 2014;12:34–45. doi: 10.3151/jact.12.34. DOI
Pawluczuk E., Kalinowska-Wichrowska K., Bołtryk M., Jiménez J.R., Fernández J.M. The Influence of Heat and Mechanical Treatment of Concrete Rubble on the Properties of Recycled Aggregate Concrete. Materials. 2019;12:367. doi: 10.3390/ma12030367. PubMed DOI PMC
Mistri A., Bhattacharyya S.K., Dhami N.K., Mukherjee A., Barai S.V. A review on different treatment methods for enhancing the properties of recycled aggregates for sustainable construction materials. Constr. Build. Mater. 2020;233:117894. doi: 10.1016/j.conbuildmat.2019.117894. DOI
Ho H.-L., Huang R., Lin W.-T., Cheng A. Pore-structures and durability of concrete containing pre-coated fine recycled mixed aggregates using pozzolan and polyvinyl alcohol materials. Constr. Build. Mater. 2018;160:278–292. doi: 10.1016/j.conbuildmat.2017.11.063. DOI
Shi C., Wu Z., Cao Z., Ling T.-C., Zheng J. Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry. Cem. Concr. Compos. 2018;86:130–138. doi: 10.1016/j.cemconcomp.2017.10.013. DOI
Kou S.-C., Poon C.S. Properties of concrete prepared with PVA-impregnated recycled concrete aggregates. Cem. Concr. Compos. 2010;32:649–654. doi: 10.1016/j.cemconcomp.2010.05.003. DOI
Katz A. Treatments for the Improvement of Recycled Aggregate. J. Mater. Civ. Eng. 2004;16:597–603. doi: 10.1061/(ASCE)0899-1561(2004)16:6(597). DOI
Bui N.K., Satomi T., Takahashi H. Mechanical properties of concrete containing 100% treated coarse recycled concrete aggregate. Constr. Build. Mater. 2018;163:496–507. doi: 10.1016/j.conbuildmat.2017.12.131. DOI
Ismail S., Ramli M. Influence of Surface-Treated Coarse Recycled Concrete Aggregate on Compressive Strength of Concrete. Int. J. Civ. Archit. Struct. Constr. Eng. 2014;8:853–857.
Tsujino M., Noguchi T., Tamura M., Kanematsu M., Maruyama I. Application of Conventionally Recycled Coarse Aggregate to Concrete Structure by Surface Modification Treatment. J. Adv. Concr. Technol. 2007;5:13–25. doi: 10.3151/jact.5.13. DOI
Liang C., Pan B., Ma Z., He Z., Duan Z. Utilization of CO2 curing to enhance the properties of recycled aggregate and prepared concrete: A review. Cem. Concr. Compos. 2020;105:103446. doi: 10.1016/j.cemconcomp.2019.103446. DOI
Grabiec A.M., Klama J., Zawal D., Krupa D. Modification of recycled concrete aggregate by calcium carbonate biodeposition. Constr. Build. Mater. 2012;34:145–150. doi: 10.1016/j.conbuildmat.2012.02.027. DOI
Singh L.P., Bisht V., Aswathy M.S., Chaurasia L., Gupta S. Studies on performance enhancement of recycled aggregate by incorporating bio and nano materials. Constr. Build. Mater. 2018;181:217–226. doi: 10.1016/j.conbuildmat.2018.05.248. DOI
Jaskulski R., Mękal J. Brittle Matrix Composites 11, Proceedings of the 11th International Symposium on Brittle Matrix Composites BMC, Warsaw, Poland, 28–30 September 2015. Institute of Fundamental Technological Research PAS; Warsaw, Poland: 2015. Selected Properties of Concrete Made with Water Glass Impregnated RCA; pp. 425–432.
Barbudo A., Ayuso J., Lozano A., Cabrera M., López-Uceda A. Recommendations for the Management of Construction and Demolition Waste in Treatment Plants. Proceedings. 2018;2:1278. doi: 10.3390/proceedings2201278. PubMed DOI
The European Committee for Standardization . EN 12350-5:2011 Testing Fresh Concrete-Part 5: Flow Table Test. The European Committee for Standardization; Brussels, Belgium: 2011.
The European Committee for Standardization . EN 12390-3:2019 Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. The European Committee for Standardization; Brussels, Belgium: 2019.
The European Committee for Standardization . EN 12390-6:2009 Testing Hardened Concrete—Part 6: Tensile Splitting Strength of Test Specimens. The European Committee for Standardization; Brussels, Belgium: 2009.
Kubissa W., Jaskulski R. Measuring and Time Variability of The Sorptivity of Concrete. Procedia Eng. 2013;57:634–641. doi: 10.1016/j.proeng.2013.04.080. DOI
The Polish Committee for Standardization . PN-B-06250:1988 Normal Concrete. The Polish Committee for Standardization; Warsaw, Poland: 1998.
Zeng Q., Li K., Fen-Chong T., Dangla P. Pore structure characterization of cement pastes blended with high-volume flyash. Cem. Concr. Res. 2012;42:194–204. doi: 10.1016/j.cemconres.2011.09.012. DOI
Bágel’ L., Živica V. Relationship between pore structure and permeability of hardened cement mortars: On the choice of effective pore structure parameter. Cem. Concr. Res. 1997;27:1225–1235. doi: 10.1016/S0008-8846(97)00111-7. DOI
Nokken M.R., Hooton R.D. Using pore parameters to estimate permeability or conductivity of concrete. Mater. Struct. 2007;41:1–16. doi: 10.1617/s11527-006-9212-y. DOI
Hooton R.D. Permeability and Pore Structure of Cement Pastes Containing Fly Ash, Slag, and Silica Fume. Blended Cements, ASTM International; West Conshohocken, PA, USA: 1986. p. 128. DOI
Katz A.J., Thompson A. Quantitative prediction of permeability in porous rock. Phys. Rev. B. 1986;34:8179–8181. doi: 10.1103/PhysRevB.34.8179. PubMed DOI