Relationship of Different Properties from Non-Destructive Testing of Heavy Concrete from Magnetite and Serpentinite

. 2021 Jul 31 ; 14 (15) : . [epub] 20210731

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34361479

Grantová podpora
SGS SP2021/81 Ministerstvo Školství, Mládeže a Tělovýchovy

Radiation-shielding concrete has been analyzed by several methods of destructive and non-destructive testing (NDT). Concretes made of crushed basalt, magnetite, serpentinite, and two different types of cement (Portland cement CEM I and slag cement CEM III/A) were studied. In this study, we analyzed concrete columns with a height of 1200 mm and a cross-section of 200 × 200 mm2. The top and bottom of the column were analyzed using data from compressive strength, dynamic modulus of elasticity, water penetration, and diffusion coefficients derived from the electrical resistivity test. This article presents the properties of fresh concrete and concrete after two years of setting. It was determined how the different ratios of basalt, magnetite, and serpentinite affect the individual measured parameters. Furthermore, correlation relations between individual resulting values were analyzed. It was observed that compressive strength generally does not correlate with other results. The diffusion coefficient correlated well with density and water penetration. Little or no correlation was observed in the diffusion coefficient with compressive strength and modulus of elasticity. The results of the study make it possible to refine the testing of heavy concretes in terms of electrical resistivity, and point to the possible use of NDT methods. The results also show which composition of heavy concrete is better in terms of effective diffusivity.

Zobrazit více v PubMed

Zhang Z. China in the transition to a low-carbon economy. Energy Policy. 2010;38:6638–6653. doi: 10.1016/j.enpol.2010.06.034. DOI

Sorimachi A., Nagamatsu Y., Omori Y., Ishikawa T. Comparison experiments for radon and thoron measuring instruments at low-level concentrations in one room of a Japanese concrete building. Appl. Radiat. Isot. 2021;173:109696. doi: 10.1016/j.apradiso.2021.109696. PubMed DOI

Aygün B., Şakar E., Agar O., Sayyed M., Karabulut A., Singh V. Development of new heavy concretes containing chrome-ore for nuclear radiation shielding applications. Prog. Nucl. Energy. 2021;133:103645. doi: 10.1016/j.pnucene.2021.103645. DOI

Lukuttsova N.P., Golovin S.N., Artamonov P.A. Heavy concrete with mineral additive tripoli. IOP Conf. Series: Mater. Sci. Eng. 2019;687:022033. doi: 10.1088/1757-899X/687/2/022033. DOI

Sikora P., Elrahman M.A., Horszczaruk E., Brzozowski P., Stephan D. Incorporation of magnetite powder as a cement additive for improving thermal resistance and gamma-ray shielding properties of cement-based composites. Constr. Build. Mater. 2019;204:113–121. doi: 10.1016/j.conbuildmat.2019.01.161. DOI

Horszczaruk E., Sikora P., Cendrowski K., Mijowska E. The effect of elevated temperature on the properties of cement mortars containing nanosilica and heavyweight aggregates. Constr. Build. Mater. 2017;137:420–431. doi: 10.1016/j.conbuildmat.2017.02.003. DOI

Kapтушина Ю., Sevriukova G.A., Parinov S.V. Production Wastes of Heavy Concrete: Technological Solution of Recycling Problem. IOP Conf. Ser. Earth Environ. Sci. 2019;272:022151. doi: 10.1088/1755-1315/272/2/022151. DOI

Yastrebinskii R.N., Bondarenko G.G., Pavlenko V. Attenuation of photon and neutron radiation using iron–magnetite–serpentinite radiation-protective composite. Inorg. Mater. Appl. Res. 2017;8:275–278. doi: 10.1134/S207511331702023X. DOI

Pavlenko V.I., Yastrebinskii R.N., Voronov D.V. Investigation of heavy radiation-shielding concrete after activation by fast neutrons and gamma radiation. J. Eng. Phys. Thermophys. 2008;81:686–691. doi: 10.1007/s10891-008-0085-5. DOI

Glinicki M., Gołaszewski J., Cygan G. Formwork Pressure of a Heavyweight Self-Compacting Concrete Mix. Materials. 2021;14:1549. doi: 10.3390/ma14061549. PubMed DOI PMC

Fedorova N., Medyankin M., Fedorov S. Strength of heavy concrete during static-dynamic deformation. IOP Conf. Series Mater. Sci. Eng. 2021;1030:012046. doi: 10.1088/1757-899X/1030/1/012046. DOI

Zhang S., Zhang K., Song B., Yu W., Li D. Dynamic Modeling and CAE Cosimulation Method for Heavy-Duty Concrete Spreader. Adv. Civ. Eng. 2021;2021:1–12. doi: 10.1155/2021/5548678. DOI

Jaskulski R., Kubissa W., Reiterman P., Holčapek O. AIP Conference Proceedings. AIP Publishing LLC; Melville, NY, USA: 2020. Thermal properties of heavy concrete for small pre-cast shielding elements; p. 020011.

Králik J., Králik J., Jr. Seismic Analysis of the Soil-Structure Interaction Considering the Local Site Effects. Trans. VSB-Tech. Univ. Ostrav. Civ. Eng. Ser. 2020;20:8–16. doi: 10.35181/tces-2020-0004. DOI

Luo P., Zhang X., Che K., Zeng B. Numerical Analysis of Passive Heavy Concrete Wall Cool Discharge Performance. Lect. Notes Electr. Eng. 2013;263:323–333. doi: 10.1007/978-3-642-39578-9_34. DOI

Horňáková M., Lehner P. Relationship of Surface and Bulk Resistivity in the Case of Mechanically Damaged Fibre Reinforced Red Ceramic Waste Aggregate Concrete. Materials. 2020;13:5501. doi: 10.3390/ma13235501. PubMed DOI PMC

Hrabová K., Lehner P., Ghosh P., Konečný P., Teplý B. Sustainability Levels in Comparison with Mechanical Properties and Durability of Pumice High-Performance Concrete. Appl. Sci. 2021;11:4964. doi: 10.3390/app11114964. DOI

Alwaeli M., Gołaszewski J., Niesler M., Pizoń J., Gołaszewska M. Recycle option for metallurgical sludge waste as a partial replacement for natural sand in mortars containing CSA cement to save the environment and natural resources. J. Hazard. Mater. 2020;398:123101. doi: 10.1016/j.jhazmat.2020.123101. PubMed DOI

Ouda A. Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding. Prog. Nucl. Energy. 2015;79:48–55. doi: 10.1016/j.pnucene.2014.11.009. DOI

Ferreira M., Bohner E., Sjöblom V., Al-Neshawy F., Ojala T. Construction of realistic NPP containment wall mock-up for challenging NDE methods; Proceedings of the Fib Symposium 2019: Concrete-Innovations in Materials, Design and Structures; Krakow, Poland. 27–29 May 2019; pp. 1651–1658.

Konečný P., Lehner P., Ponikiewski T., Miera P. Comparison of Chloride Diffusion Coefficient Evaluation Based on Electrochemical Methods. Procedia Eng. 2017;190:193–198. doi: 10.1016/j.proeng.2017.05.326. DOI

Pyka N., Noack K., Rogov A. Optimization of a partially non-magnetic primary radiation. shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. Appl. Phys. A. 2002;74:s277–s279. doi: 10.1007/s003390201397. DOI

Glinicki M.A., Litorowicz A. Crack system evaluation in concrete elements at mesoscale. Bull. Pol. Acad. Sci. Tech. Sci. 2006;54:371–379.

Gökçe H., Öztürk B.C., Çam N. Andiç-Çakır, Özge Gamma-ray attenuation coefficients and transmission thickness of high consistency heavyweight concrete containing mineral admixture. Cem. Concr. Compos. 2018;92:56–69. doi: 10.1016/j.cemconcomp.2018.05.015. DOI

EN197-1 . Cement Part 1: Composition, Specifications and Conformity Criteria for Common Cement. British Standards Institution; London, UK: 2011. p. 50.

Baran T., Glinicki M.A., Jóźwiak-Niedźwiedzka D. The properties of special cements for shielding constructions in nuclear power plants. Cem. Wapno Bet. 2016;21/83:207–216.

Gołaszewski J., Ponikiewski T., Kostrzanowska-Siedlarz A., Miera P. The Influence of Calcareous Fly Ash on the Effectiveness of Plasticizers and Superplasticizers. Materials. 2020;13:2245. doi: 10.3390/ma13102245. PubMed DOI PMC

Gołaszewski J. Influence of Viscosity Enhancing Agent on Rheology and Compressive Strength of Superplasticized Mortars. J. Civ. Eng. Manag. 2009;15:181–188. doi: 10.3846/1392-3730.2009.15.181-188. DOI

Kubissa W., Glinicki M.A. Influence of internal relative humidity and mix design of radiation shielding concrete on air permeability index. Constr. Build. Mater. 2017;147:352–361. doi: 10.1016/j.conbuildmat.2017.04.177. DOI

British Standards Institution . Testing Fresh Concrete. Air Content. Pressure Methods. British Standards Institution; London, UK: 2019. EN 12350-7; p. 28.

British Standards Institution . Testing Fresh Concrete. Density. British Standards Institution; London, UK: 2019. EN 12350-6; p. 14.

British Standards Institution . Testing Hardened Concrete Part. 3: Compressive Strength of Test. Specimens. British Standards Institution; London, UK: 2002. EN 12390-3.

British Standards Institution . Testing Hardened Concrete Part. 8: Depth of Penetration of Water under Pressure. British Standards Institution; London, UK: 2009. EN 12390-8.

British Standards Institution . Determination of Ultrasonic Pulse Velocity. Volume 3. British Standards Institution; London, UK: 2004. EN 12504-4; p. 18.

American Association of State Highway and Transportation Officials . AASHTO T358-Standard Method of Test. for Surface Resistivity Indication of Concrete’s Ability to Resist. Chloride Ion. Penetration. American Association of State Highway and Transportation Officials; Washington, DC, USA: 2013. AASHTO T358.

Lu X.Y. Application of the Nernst-Einstein equation to concrete. Cem. Concr. Res. 1997;27:293–302. doi: 10.1016/S0008-8846(96)00200-1. DOI

Zhang Z., Thiery M., Baroghel-Bouny V. Investigation of moisture transport properties of cementitious materials. Cem. Concr. Res. 2016;89:257–268. doi: 10.1016/j.cemconres.2016.08.013. DOI

Nikbin I., Mehdipour S., Dezhampanah S., Mohammadi R., Mohebbi R., Moghadam H., Sadrmomtazi A. Effect of high temperature on mechanical and gamma ray shielding properties of concrete containing nano-TiO2. Radiat. Phys. Chem. 2020;174:108967. doi: 10.1016/j.radphyschem.2020.108967. DOI

Shams T., Eftekhar M., Shirani A. Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms. Constr. Build. Mater. 2018;182:35–42. doi: 10.1016/j.conbuildmat.2018.06.032. DOI

Malaikah A. A Proposed Relationship for the Modulus of Elasticity of High Strength Concrete Using Local Materials in Riyadh. J. King Saud Univ. Eng. Sci. 2005;17:131–141. doi: 10.1016/S1018-3639(18)30804-3. DOI

de Grazia M.T., Deda H., Sanchez L.F. The influence of the binder type & aggregate nature on the electrical resistivity of conventional concrete. J. Build. Eng. 2021;43:102540. doi: 10.1016/j.jobe.2021.102540. DOI

Saini A., Prabhune A., Mishra A., Dey R. Density, ultrasonic velocity, viscosity, refractive index and surface tension of aqueous choline chloride with electrolyte solutions. J. Mol. Liq. 2021;323:114593. doi: 10.1016/j.molliq.2020.114593. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...