N-Formylated Peptide Induces Increased Expression of Both Formyl Peptide Receptor 2 (Fpr2) and Toll-Like Receptor 9 (TLR9) in Schwannoma Cells-An In Vitro Model for Early Inflammatory Profiling of Schwann Cells

. 2020 Dec 11 ; 9 (12) : . [epub] 20201211

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33322305

Following nerve injury, disintegrated axonal mitochondria distal to the injury site release mitochondrial formylated peptides and DNA that can induce activation and inflammatory profiling of Schwann cells via formyl peptide receptor 2 (Fpr2) and toll-like receptor 9 (TLR9), respectively. We studied RT4 schwannoma cells to investigate the regulation of Fpr2 and TLR9 after stimulation with fMLF as a prototypical formylated peptide. RT4 cells were treated with fMLF at various concentrations and times with and without pretreatment with inhibitors (chloroquine for activated TLR9, PBP10 for Fpr2). Western blots of Fpr2, TLR9, p-p38, p-NFκB, and IL-6 were compared in relation to inflammatory profiling of RT4 cells and chemokine receptors (CCR2, CXCR4) as potential co-receptors of Fpr2. fMLF stimulation upregulated Fpr2 in RT4 cells at low concentrations (10 nM and 100 nM) but higher concentrations were required (10 µM and 50 µM) when the cells were pretreated with an activated TLR9 inhibitor. Moreover, the higher concentrations of fMLF could modulate TLR9 and inflammatory markers. Upregulation of Fpr2 triggered by 10 nM and 100 nM fMLF coincided with higher levels of chemokine receptors (CCR2, CXCR4) and PKCβ. Treating RT4 cells with fMLF, as an in vitro model of Schwann cells, uncovered Schwann cells' complex responses to molecular patterns of release from injured axonal mitochondria.

Zobrazit více v PubMed

Jessen K.R., Mirsky R. The repair Schwann cell and its function in regenerating nerves. J. Physiol. 2016;594:3521–3531. doi: 10.1113/JP270874. PubMed DOI PMC

Stoll G., Jander S., Myers R.R. Degeneration and regeneration of the peripheral nervous system: From Augustus Waller’s observations to neuroinflammation. J. Peripher. Nerv. Syst. JPNS. 2002;7:13–27. doi: 10.1046/j.1529-8027.2002.02002.x. PubMed DOI

Rotshenker S. Wallerian degeneration: The innate-immune response to traumatic nerve injury. J. Neuroinflamm. 2011;8:109. doi: 10.1186/1742-2094-8-109. PubMed DOI PMC

Gaudet A.D., Popovich P.G., Ramer M.S. Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflamm. 2011;8:110. doi: 10.1186/1742-2094-8-110. PubMed DOI PMC

Dubový P., Jančálek R., Kubek T. Role of inflammation and cytokines in peripheral nerve regeneration. Int. Rev. Neurobiol. 2013;108:173–206. doi: 10.1016/B978-0-12-410499-0.00007-1. PubMed DOI

Dubový P., Klusáková I., Hradilová Svíženská I. Inflammatory profiling of Schwann cells in contact with growing axons distal to nerve injury. BioMed. Res. Int. 2014;2014:691041. doi: 10.1155/2014/691041. PubMed DOI PMC

Barrientos S.A., Martinez N.W., Yoo S., Jara J.S., Zamorano S., Hetz C., Twiss J.L., Alvarez J., Court F.A. Axonal Degeneration Is Mediated by the Mitochondrial Permeability Transition Pore. J. Neurosci. 2011;31:966–978. doi: 10.1523/JNEUROSCI.4065-10.2011. PubMed DOI PMC

Wang J.T., Medress Z.A., Barres B.A. Axon degeneration: Molecular mechanisms of a self-destruction pathway. J. Cell Biol. 2012;196:7–18. doi: 10.1083/jcb.201108111. PubMed DOI PMC

Park J.Y., Jang S.Y., Shin Y.K., Koh H., Suh D.J., Shinji T., Araki T., Park H.T. Mitochondrial swelling and microtubule depolymerization are associated with energy depletion in axon degeneration. Neuroscience. 2013;238:258–269. doi: 10.1016/j.neuroscience.2013.02.033. PubMed DOI

Freeman M.R. Signaling mechanisms regulating Wallerian degeneration. Curr. Opin. Neurobiol. 2014;27:224–231. doi: 10.1016/j.conb.2014.05.001. PubMed DOI PMC

Hirsiger S., Simmen H.-P., Werner C.M.L., Wanner G.A., Rittirsch D. Danger signals activating the immune response after trauma. Mediat. Inflamm. 2012;2012:315941. doi: 10.1155/2012/315941. PubMed DOI PMC

Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., Brohi K., Itagaki K., Hauser C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–107. doi: 10.1038/nature08780. PubMed DOI PMC

Shamash S., Reichert F., Rotshenker S. The cytokine network of Wallerian degeneration: Tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J. Neurosci. Off. J. Soc. Neurosci. 2002;22:3052–3060. doi: 10.1523/JNEUROSCI.22-08-03052.2002. PubMed DOI PMC

Boivin A., Pineau I., Barrette B., Filali M., Vallières N., Rivest S., Lacroix S. Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J. Neurosci. 2007;27:12565–12576. doi: 10.1523/JNEUROSCI.3027-07.2007. PubMed DOI PMC

Goethals S., Ydens E., Timmerman V., Janssens S. Toll-like receptor expression in the peripheral nerve. Glia. 2010;58:1701–1709. doi: 10.1002/glia.21041. PubMed DOI

Latz E., Schoenemeyer A., Visintin A., Fitzgerald K.A., Monks B.G., Knetter C.F., Lien E., Nilsen N.J., Espevik T., Golenbock D.T. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 2004;5:190–198. doi: 10.1038/ni1028. PubMed DOI

Raoof M., Zhang Q., Itagaki K., Hauser C.J. Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. J. Trauma. 2010;68:1328–1332. doi: 10.1097/TA.0b013e3181dcd28d. PubMed DOI

Cui Y. Up-Regulation of FPR2, a Chemotactic Receptor for Amyloid β 1–42 (Aβ42), in Murine Microglial Cells by TNFα. Neurobiol. Dis. 2002;10:366–377. doi: 10.1006/nbdi.2002.0517. PubMed DOI

Krysko D.V., Agostinis P., Krysko O., Garg A.D., Bachert C., Lambrecht B.N., Vandenabeele P. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 2011;32:157–164. doi: 10.1016/j.it.2011.01.005. PubMed DOI

Weiß E., Kretschmer D. Formyl-Peptide Receptors in Infection, Inflammation, and Cancer. Trends Immunol. 2018;39:815–829. doi: 10.1016/j.it.2018.08.005. PubMed DOI

Ye R.D., Boulay F., Wang J.M., Dahlgren C., Gerard C., Parmentier M., Serhan C.N., Murphy P.M. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family. Pharmacol. Rev. 2009;61:119–161. doi: 10.1124/pr.109.001578. PubMed DOI PMC

Gao X., Hu X., Qian L., Yang S., Zhang W., Zhang D., Wu X., Fraser A., Wilson B., Flood P.M., et al. Formyl-methionyl-leucyl-phenylalanine–Induced Dopaminergic Neurotoxicity via Microglial Activation: A Mediator between Peripheral Infection and Neurodegeneration? Environ. Health Perspect. 2008;116:593–598. doi: 10.1289/ehp.11031. PubMed DOI PMC

He H.-Q., Ye R.D. The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules. 2017;22:455. doi: 10.3390/molecules22030455. PubMed DOI PMC

Porro C., Cianciulli A., Trotta T., Lofrumento D.D., Calvello R., Panaro M.A. Formyl-methionyl-leucyl-phenylalanine Induces Apoptosis in Murine Neurons: Evidence for NO-Dependent Caspase-9 Activation. Biology. 2019;8:4. doi: 10.3390/biology8010004. PubMed DOI PMC

Hartt J.K., Barish G., Murphy P.M., Gao J.L. N-formylpeptides induce two distinct concentration optima for mouse neutrophil chemotaxis by differential interaction with two N-formylpeptide receptor (FPR) subtypes. Molecular characterization of FPR2, a second mouse neutrophil FPR. J. Exp. Med. 1999;190:741–747. doi: 10.1084/jem.190.5.741. PubMed DOI PMC

Le Y., Oppenheim J.J., Wang J.M. Pleiotropic roles of formyl peptide receptors. Cytokine Growth Factor Rev. 2001;12:91–105. doi: 10.1016/S1359-6101(01)00003-X. PubMed DOI

Cattaneo F., Guerra G., Ammendola R. Expression and signaling of formyl-peptide receptors in the brain. Neurochem. Res. 2010;35:2018–2026. doi: 10.1007/s11064-010-0301-5. PubMed DOI

Cattaneo F., Parisi M., Ammendola R. Distinct Signaling Cascades Elicited by Different Formyl Peptide Receptor 2 (FPR2) Agonists. Int. J. Mol. Sci. 2013;14:7193–7230. doi: 10.3390/ijms14047193. PubMed DOI PMC

Hase A., Saito F., Yamada H., Arai K., Shimizu T., Matsumura K. Characterization of glial cell line-derived neurotrophic factor family receptor alpha-1 in peripheral nerve Schwann cells. J. Neurochem. 2005;95:537–543. doi: 10.1111/j.1471-4159.2005.03391.x. PubMed DOI

Lee H.K., Seo I.A., Suh D.J., Hong J.-I., Yoo Y.H., Park H.T. Interleukin-6 is required for the early induction of glial fibrillary acidic protein in Schwann cells during Wallerian degeneration. J. Neurochem. 2009;108:776–786. doi: 10.1111/j.1471-4159.2008.05826.x. PubMed DOI

Lamarca A., Gella A., Martiañez T., Segura M., Figueiro-Silva J., Grijota-Martinez C., Trullas R., Casals N. Uridine 5′-Triphosphate Promotes In Vitro Schwannoma Cell Migration through Matrix Metalloproteinase-2 Activation. PLoS ONE. 2014;9:e98998. doi: 10.1371/journal.pone.0098998. PubMed DOI PMC

Guo J., Grovola M.R., Xie H., Coggins G.E., Duggan P., Hasan R., Huang J., Lin D.W., Song C., Witek G.M., et al. Comprehensive pharmacological profiling of neurofibromatosis cell lines. Am. J. Cancer Res. 2017;7:923–934. PubMed PMC

Rutz M., Metzger J., Gellert T., Luppa P., Lipford G.B., Wagner H., Bauer S. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur. J. Immunol. 2004;34:2541–2550. doi: 10.1002/eji.200425218. PubMed DOI

Ewald S.E., Lee B.L., Lau L., Wickliffe K.E., Shi G.-P., Chapman H.A., Barton G.M. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature. 2008;456:658–662. doi: 10.1038/nature07405. PubMed DOI PMC

Lacagnina M.J., Watkins L.R., Grace P.M. Toll-like receptors and their role in persistent pain. Pharmacol. Ther. 2018;184:145–158. doi: 10.1016/j.pharmthera.2017.10.006. PubMed DOI PMC

Cussell P.J.G., Escalada M.G., Milton N.G.N., Paterson A.W.J. The N-formyl peptide receptors: Contemporary roles in neuronal function and dysfunction. Neural Regen. Res. 2020;15:1191. doi: 10.4103/1673-5374.272566. PubMed DOI PMC

Xu X., Gera N., Li H., Yun M., Zhang L., Wang Y., Wang Q.J., Jin T. GPCR-mediated PLCβγ/PKCβ/PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis. Mol. Biol. Cell. 2015;26:874–886. doi: 10.1091/mbc.E14-05-0982. PubMed DOI PMC

Rajarathnam K., Schnoor M., Richardson R.M., Rajagopal S. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell. Signal. 2019;54:69–80. doi: 10.1016/j.cellsig.2018.11.004. PubMed DOI PMC

Gölz G., Uhlmann L., Lüdecke D., Markgraf N., Nitsch R., Hendrix S. The cytokine/neurotrophin axis in peripheral axon outgrowth. Eur. J. Neurosci. 2006;24:2721–2730. doi: 10.1111/j.1460-9568.2006.05155.x. PubMed DOI

Klimaschewski L., Hausott B., Angelov D.N. The Pros and Cons of Growth Factors and Cytokines in Peripheral Axon Regeneration. In: Geuna S., Perroteau I., Tos P., Battiston B., editors. Tissue Engineering of the Peripheral Nerve: Stem Cells and Regeneration Promoting Factors. Volume 108. Elsevier Academic Press Inc.; San Diego, CA, USA: 2013. pp. 137–171. PubMed

West A.P., Shadel G.S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 2017;17:363–375. doi: 10.1038/nri.2017.21. PubMed DOI PMC

Cui Y.H., Le Y.Y., Gong W.H., Proost P., Van Damme J., Murphy W.J., Wang J.M. Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells. J. Immunol. 2002;168:434–442. doi: 10.4049/jimmunol.168.1.434. PubMed DOI

Xia W., Zhu J., Wang X., Tang Y., Zhou P., Hou M., Li S. ANXA1 directs Schwann cells proliferation and migration to accelerate nerve regeneration through the FPR2/AMPK pathway. FASEB J. 2020;34:13993–14005. doi: 10.1096/fj.202000726RRR. PubMed DOI

Chen K., Bao Z., Gong W., Tang P., Yoshimura T., Wang J.M. Regulation of inflammation by members of the formyl-peptide receptor family. J. Autoimmun. 2017;85:64–77. doi: 10.1016/j.jaut.2017.06.012. PubMed DOI PMC

Korimová A., Klusáková I., Hradilová-Svíženská I., Kohoutková M., Joukal M., Dubový P. Mitochondrial Damage-Associated Molecular Patterns of Injured Axons Induce Outgrowth of Schwann Cell Processes. Front. Cell. Neurosci. 2018;12:457. doi: 10.3389/fncel.2018.00457. PubMed DOI PMC

Hai M., Muja N., DeVries G.H., Quarles R.H., Patel P.I. Comparative analysis of Schwann cell lines as model systems for myelin gene transcription studies. J. Neurosci. Res. 2002;69:497–508. doi: 10.1002/jnr.10327. PubMed DOI

Geuna S., Raimondo S., Fregnan F., Haastert-Talini K., Grothe C. In vitro models for peripheral nerve regeneration. Eur. J. Neurosci. 2016;43:287–296. doi: 10.1111/ejn.13054. PubMed DOI

Filep J.G., Sekheri M., El Kebir D. Targeting formyl peptide receptors to facilitate the resolution of inflammation. Eur. J. Pharmacol. 2018;833:339–348. doi: 10.1016/j.ejphar.2018.06.025. PubMed DOI

Kigerl K.A., de Rivero Vaccari J.P., Dietrich W.D., Popovich P.G., Keane R.W. Pattern recognition receptors and central nervous system repair. Exp. Neurol. 2014;258:5–16. doi: 10.1016/j.expneurol.2014.01.001. PubMed DOI PMC

Raabe C.A., Gröper J., Rescher U. Biased perspectives on formyl peptide receptors. Biochim. Biophys. Acta BBA Mol. Cell Res. 2019;1866:305–316. doi: 10.1016/j.bbamcr.2018.11.015. PubMed DOI

Riley J.S., Tait S.W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21:e49799. doi: 10.15252/embr.201949799. PubMed DOI PMC

Iribarren P., Chen K., Hu J., Gong W., Cho E.H., Lockert S., Uranchimeg B., Wang J.M. CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid β 1–42 peptide by up-regulating the expression of the G-protein-coupled receptor mFPR2. FASEB J. 2005;19:2032–2034. doi: 10.1096/fj.05-4578fje. PubMed DOI

Chen K., Huang J., Liu Y., Gong W., Cui Y., Wang J.M. Synergy of TRIF-dependent TLR3 and MyD88-dependent TLR7 in up-regulating expression of mouse FPR2, a promiscuous G-protein-coupled receptor, in microglial cells. J. Neuroimmunol. 2009;213:69–77. doi: 10.1016/j.jneuroim.2009.05.018. PubMed DOI PMC

Hacker G., Redecke V., Hacker H. Activation of the immune system by bacterial CpG-DNA. Immunology. 2002;105:245–251. doi: 10.1046/j.0019-2805.2001.01350.x. PubMed DOI PMC

Takeshita F., Gursel I., Ishii K.J., Suzuki K., Gursel M., Klinman D.M. Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. Semin. Immunol. 2004;16:17–22. doi: 10.1016/j.smim.2003.10.009. PubMed DOI

Pineau I., Lacroix S. Endogenous signals initiating inflammation in the injured nervous system. Glia. 2009;57:351–361. doi: 10.1002/glia.20763. PubMed DOI

Shih R.-H., Wang C.-Y., Yang C.-M. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front. Mol. Neurosci. 2015;8:77. doi: 10.3389/fnmol.2015.00077. PubMed DOI PMC

Dufton N., Hannon R., Brancaleone V., Dalli J., Patel H.B., Gray M., D’Acquisto F., Buckingham J.C., Perretti M., Flower R.J. Anti-Inflammatory Role of the Murine Formyl-Peptide Receptor 2: Ligand-Specific Effects on Leukocyte Responses and Experimental Inflammation. J. Immunol. 2010;184:2611–2619. doi: 10.4049/jimmunol.0903526. PubMed DOI PMC

Le Y., Murphy P.M., Wang J.M. Formyl-peptide receptors revisited. Trends Immunol. 2002;23:541–548. doi: 10.1016/S1471-4906(02)02316-5. PubMed DOI

Migeotte I., Communi D., Parmentier M. Formyl peptide receptors: A promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev. 2006;17:501–519. doi: 10.1016/j.cytogfr.2006.09.009. PubMed DOI

Hughes C.E., Nibbs R.J.B. A guide to chemokines and their receptors. FEBS J. 2018;285:2944–2971. doi: 10.1111/febs.14466. PubMed DOI PMC

Busillo J.M., Armando S., Sengupta R., Meucci O., Bouvier M., Benovic J.L. Site-specific Phosphorylation of CXCR4 Is Dynamically Regulated by Multiple Kinases and Results in Differential Modulation of CXCR4 Signaling. J. Biol. Chem. 2010;285:7805–7817. doi: 10.1074/jbc.M109.091173. PubMed DOI PMC

Cattaneo F., Russo R., Castaldo M., Chambery A., Zollo C., Esposito G., Pedone P.V., Ammendola R. Phosphoproteomic analysis sheds light on intracellular signaling cascades triggered by Formyl-Peptide Receptor 2. Sci. Rep. 2019;9:17894. doi: 10.1038/s41598-019-54502-6. PubMed DOI PMC

Le Y., Li B., Gong W., Shen W., Hu J., Dunlop N.M., Oppenheim J.J., Wang J.M. Novel pathophysiological role of classical chemotactic peptide receptors and their communications with chemokine receptors. Immunol. Rev. 2000;177:185–194. doi: 10.1034/j.1600-065X.2000.17704.x. PubMed DOI

Jesaitis A.J., Klotz K.-N. Cytoskeletal regulation of chemotactic receptors: Molecular complexation of N-formyl peptide receptors with G proteins and actin. Eur. J. Haematol. 2009;51:288–293. doi: 10.1111/j.1600-0609.1993.tb01610.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...