N-Formylated Peptide Induces Increased Expression of Both Formyl Peptide Receptor 2 (Fpr2) and Toll-Like Receptor 9 (TLR9) in Schwannoma Cells-An In Vitro Model for Early Inflammatory Profiling of Schwann Cells
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33322305
PubMed Central
PMC7763069
DOI
10.3390/cells9122661
PII: cells9122661
Knihovny.cz E-resources
- Keywords
- Wallerian degeneration, chemokines, cytokines, damage-associated molecular patterns, disintegration, mitochondria, receptors,
- MeSH
- Chloroquine pharmacology MeSH
- Rats MeSH
- N-Formylmethionine Leucyl-Phenylalanine pharmacology MeSH
- Cell Line, Tumor MeSH
- Neurilemmoma metabolism pathology MeSH
- Receptors, CCR2 genetics metabolism MeSH
- Receptors, CXCR4 genetics metabolism MeSH
- Receptors, Formyl Peptide antagonists & inhibitors genetics metabolism MeSH
- Schwann Cells cytology drug effects metabolism MeSH
- Signal Transduction drug effects MeSH
- Toll-Like Receptor 9 antagonists & inhibitors genetics metabolism MeSH
- Up-Regulation drug effects MeSH
- Inflammation metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chloroquine MeSH
- N-Formylmethionine Leucyl-Phenylalanine MeSH
- Receptors, CCR2 MeSH
- Receptors, CXCR4 MeSH
- Receptors, Formyl Peptide MeSH
- Toll-Like Receptor 9 MeSH
Following nerve injury, disintegrated axonal mitochondria distal to the injury site release mitochondrial formylated peptides and DNA that can induce activation and inflammatory profiling of Schwann cells via formyl peptide receptor 2 (Fpr2) and toll-like receptor 9 (TLR9), respectively. We studied RT4 schwannoma cells to investigate the regulation of Fpr2 and TLR9 after stimulation with fMLF as a prototypical formylated peptide. RT4 cells were treated with fMLF at various concentrations and times with and without pretreatment with inhibitors (chloroquine for activated TLR9, PBP10 for Fpr2). Western blots of Fpr2, TLR9, p-p38, p-NFκB, and IL-6 were compared in relation to inflammatory profiling of RT4 cells and chemokine receptors (CCR2, CXCR4) as potential co-receptors of Fpr2. fMLF stimulation upregulated Fpr2 in RT4 cells at low concentrations (10 nM and 100 nM) but higher concentrations were required (10 µM and 50 µM) when the cells were pretreated with an activated TLR9 inhibitor. Moreover, the higher concentrations of fMLF could modulate TLR9 and inflammatory markers. Upregulation of Fpr2 triggered by 10 nM and 100 nM fMLF coincided with higher levels of chemokine receptors (CCR2, CXCR4) and PKCβ. Treating RT4 cells with fMLF, as an in vitro model of Schwann cells, uncovered Schwann cells' complex responses to molecular patterns of release from injured axonal mitochondria.
See more in PubMed
Jessen K.R., Mirsky R. The repair Schwann cell and its function in regenerating nerves. J. Physiol. 2016;594:3521–3531. doi: 10.1113/JP270874. PubMed DOI PMC
Stoll G., Jander S., Myers R.R. Degeneration and regeneration of the peripheral nervous system: From Augustus Waller’s observations to neuroinflammation. J. Peripher. Nerv. Syst. JPNS. 2002;7:13–27. doi: 10.1046/j.1529-8027.2002.02002.x. PubMed DOI
Rotshenker S. Wallerian degeneration: The innate-immune response to traumatic nerve injury. J. Neuroinflamm. 2011;8:109. doi: 10.1186/1742-2094-8-109. PubMed DOI PMC
Gaudet A.D., Popovich P.G., Ramer M.S. Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflamm. 2011;8:110. doi: 10.1186/1742-2094-8-110. PubMed DOI PMC
Dubový P., Jančálek R., Kubek T. Role of inflammation and cytokines in peripheral nerve regeneration. Int. Rev. Neurobiol. 2013;108:173–206. doi: 10.1016/B978-0-12-410499-0.00007-1. PubMed DOI
Dubový P., Klusáková I., Hradilová Svíženská I. Inflammatory profiling of Schwann cells in contact with growing axons distal to nerve injury. BioMed. Res. Int. 2014;2014:691041. doi: 10.1155/2014/691041. PubMed DOI PMC
Barrientos S.A., Martinez N.W., Yoo S., Jara J.S., Zamorano S., Hetz C., Twiss J.L., Alvarez J., Court F.A. Axonal Degeneration Is Mediated by the Mitochondrial Permeability Transition Pore. J. Neurosci. 2011;31:966–978. doi: 10.1523/JNEUROSCI.4065-10.2011. PubMed DOI PMC
Wang J.T., Medress Z.A., Barres B.A. Axon degeneration: Molecular mechanisms of a self-destruction pathway. J. Cell Biol. 2012;196:7–18. doi: 10.1083/jcb.201108111. PubMed DOI PMC
Park J.Y., Jang S.Y., Shin Y.K., Koh H., Suh D.J., Shinji T., Araki T., Park H.T. Mitochondrial swelling and microtubule depolymerization are associated with energy depletion in axon degeneration. Neuroscience. 2013;238:258–269. doi: 10.1016/j.neuroscience.2013.02.033. PubMed DOI
Freeman M.R. Signaling mechanisms regulating Wallerian degeneration. Curr. Opin. Neurobiol. 2014;27:224–231. doi: 10.1016/j.conb.2014.05.001. PubMed DOI PMC
Hirsiger S., Simmen H.-P., Werner C.M.L., Wanner G.A., Rittirsch D. Danger signals activating the immune response after trauma. Mediat. Inflamm. 2012;2012:315941. doi: 10.1155/2012/315941. PubMed DOI PMC
Zhang Q., Raoof M., Chen Y., Sumi Y., Sursal T., Junger W., Brohi K., Itagaki K., Hauser C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–107. doi: 10.1038/nature08780. PubMed DOI PMC
Shamash S., Reichert F., Rotshenker S. The cytokine network of Wallerian degeneration: Tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J. Neurosci. Off. J. Soc. Neurosci. 2002;22:3052–3060. doi: 10.1523/JNEUROSCI.22-08-03052.2002. PubMed DOI PMC
Boivin A., Pineau I., Barrette B., Filali M., Vallières N., Rivest S., Lacroix S. Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J. Neurosci. 2007;27:12565–12576. doi: 10.1523/JNEUROSCI.3027-07.2007. PubMed DOI PMC
Goethals S., Ydens E., Timmerman V., Janssens S. Toll-like receptor expression in the peripheral nerve. Glia. 2010;58:1701–1709. doi: 10.1002/glia.21041. PubMed DOI
Latz E., Schoenemeyer A., Visintin A., Fitzgerald K.A., Monks B.G., Knetter C.F., Lien E., Nilsen N.J., Espevik T., Golenbock D.T. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 2004;5:190–198. doi: 10.1038/ni1028. PubMed DOI
Raoof M., Zhang Q., Itagaki K., Hauser C.J. Mitochondrial peptides are potent immune activators that activate human neutrophils via FPR-1. J. Trauma. 2010;68:1328–1332. doi: 10.1097/TA.0b013e3181dcd28d. PubMed DOI
Cui Y. Up-Regulation of FPR2, a Chemotactic Receptor for Amyloid β 1–42 (Aβ42), in Murine Microglial Cells by TNFα. Neurobiol. Dis. 2002;10:366–377. doi: 10.1006/nbdi.2002.0517. PubMed DOI
Krysko D.V., Agostinis P., Krysko O., Garg A.D., Bachert C., Lambrecht B.N., Vandenabeele P. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 2011;32:157–164. doi: 10.1016/j.it.2011.01.005. PubMed DOI
Weiß E., Kretschmer D. Formyl-Peptide Receptors in Infection, Inflammation, and Cancer. Trends Immunol. 2018;39:815–829. doi: 10.1016/j.it.2018.08.005. PubMed DOI
Ye R.D., Boulay F., Wang J.M., Dahlgren C., Gerard C., Parmentier M., Serhan C.N., Murphy P.M. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the Formyl Peptide Receptor (FPR) Family. Pharmacol. Rev. 2009;61:119–161. doi: 10.1124/pr.109.001578. PubMed DOI PMC
Gao X., Hu X., Qian L., Yang S., Zhang W., Zhang D., Wu X., Fraser A., Wilson B., Flood P.M., et al. Formyl-methionyl-leucyl-phenylalanine–Induced Dopaminergic Neurotoxicity via Microglial Activation: A Mediator between Peripheral Infection and Neurodegeneration? Environ. Health Perspect. 2008;116:593–598. doi: 10.1289/ehp.11031. PubMed DOI PMC
He H.-Q., Ye R.D. The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules. 2017;22:455. doi: 10.3390/molecules22030455. PubMed DOI PMC
Porro C., Cianciulli A., Trotta T., Lofrumento D.D., Calvello R., Panaro M.A. Formyl-methionyl-leucyl-phenylalanine Induces Apoptosis in Murine Neurons: Evidence for NO-Dependent Caspase-9 Activation. Biology. 2019;8:4. doi: 10.3390/biology8010004. PubMed DOI PMC
Hartt J.K., Barish G., Murphy P.M., Gao J.L. N-formylpeptides induce two distinct concentration optima for mouse neutrophil chemotaxis by differential interaction with two N-formylpeptide receptor (FPR) subtypes. Molecular characterization of FPR2, a second mouse neutrophil FPR. J. Exp. Med. 1999;190:741–747. doi: 10.1084/jem.190.5.741. PubMed DOI PMC
Le Y., Oppenheim J.J., Wang J.M. Pleiotropic roles of formyl peptide receptors. Cytokine Growth Factor Rev. 2001;12:91–105. doi: 10.1016/S1359-6101(01)00003-X. PubMed DOI
Cattaneo F., Guerra G., Ammendola R. Expression and signaling of formyl-peptide receptors in the brain. Neurochem. Res. 2010;35:2018–2026. doi: 10.1007/s11064-010-0301-5. PubMed DOI
Cattaneo F., Parisi M., Ammendola R. Distinct Signaling Cascades Elicited by Different Formyl Peptide Receptor 2 (FPR2) Agonists. Int. J. Mol. Sci. 2013;14:7193–7230. doi: 10.3390/ijms14047193. PubMed DOI PMC
Hase A., Saito F., Yamada H., Arai K., Shimizu T., Matsumura K. Characterization of glial cell line-derived neurotrophic factor family receptor alpha-1 in peripheral nerve Schwann cells. J. Neurochem. 2005;95:537–543. doi: 10.1111/j.1471-4159.2005.03391.x. PubMed DOI
Lee H.K., Seo I.A., Suh D.J., Hong J.-I., Yoo Y.H., Park H.T. Interleukin-6 is required for the early induction of glial fibrillary acidic protein in Schwann cells during Wallerian degeneration. J. Neurochem. 2009;108:776–786. doi: 10.1111/j.1471-4159.2008.05826.x. PubMed DOI
Lamarca A., Gella A., Martiañez T., Segura M., Figueiro-Silva J., Grijota-Martinez C., Trullas R., Casals N. Uridine 5′-Triphosphate Promotes In Vitro Schwannoma Cell Migration through Matrix Metalloproteinase-2 Activation. PLoS ONE. 2014;9:e98998. doi: 10.1371/journal.pone.0098998. PubMed DOI PMC
Guo J., Grovola M.R., Xie H., Coggins G.E., Duggan P., Hasan R., Huang J., Lin D.W., Song C., Witek G.M., et al. Comprehensive pharmacological profiling of neurofibromatosis cell lines. Am. J. Cancer Res. 2017;7:923–934. PubMed PMC
Rutz M., Metzger J., Gellert T., Luppa P., Lipford G.B., Wagner H., Bauer S. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur. J. Immunol. 2004;34:2541–2550. doi: 10.1002/eji.200425218. PubMed DOI
Ewald S.E., Lee B.L., Lau L., Wickliffe K.E., Shi G.-P., Chapman H.A., Barton G.M. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature. 2008;456:658–662. doi: 10.1038/nature07405. PubMed DOI PMC
Lacagnina M.J., Watkins L.R., Grace P.M. Toll-like receptors and their role in persistent pain. Pharmacol. Ther. 2018;184:145–158. doi: 10.1016/j.pharmthera.2017.10.006. PubMed DOI PMC
Cussell P.J.G., Escalada M.G., Milton N.G.N., Paterson A.W.J. The N-formyl peptide receptors: Contemporary roles in neuronal function and dysfunction. Neural Regen. Res. 2020;15:1191. doi: 10.4103/1673-5374.272566. PubMed DOI PMC
Xu X., Gera N., Li H., Yun M., Zhang L., Wang Y., Wang Q.J., Jin T. GPCR-mediated PLCβγ/PKCβ/PKD signaling pathway regulates the cofilin phosphatase slingshot 2 in neutrophil chemotaxis. Mol. Biol. Cell. 2015;26:874–886. doi: 10.1091/mbc.E14-05-0982. PubMed DOI PMC
Rajarathnam K., Schnoor M., Richardson R.M., Rajagopal S. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Cell. Signal. 2019;54:69–80. doi: 10.1016/j.cellsig.2018.11.004. PubMed DOI PMC
Gölz G., Uhlmann L., Lüdecke D., Markgraf N., Nitsch R., Hendrix S. The cytokine/neurotrophin axis in peripheral axon outgrowth. Eur. J. Neurosci. 2006;24:2721–2730. doi: 10.1111/j.1460-9568.2006.05155.x. PubMed DOI
Klimaschewski L., Hausott B., Angelov D.N. The Pros and Cons of Growth Factors and Cytokines in Peripheral Axon Regeneration. In: Geuna S., Perroteau I., Tos P., Battiston B., editors. Tissue Engineering of the Peripheral Nerve: Stem Cells and Regeneration Promoting Factors. Volume 108. Elsevier Academic Press Inc.; San Diego, CA, USA: 2013. pp. 137–171. PubMed
West A.P., Shadel G.S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 2017;17:363–375. doi: 10.1038/nri.2017.21. PubMed DOI PMC
Cui Y.H., Le Y.Y., Gong W.H., Proost P., Van Damme J., Murphy W.J., Wang J.M. Bacterial lipopolysaccharide selectively up-regulates the function of the chemotactic peptide receptor formyl peptide receptor 2 in murine microglial cells. J. Immunol. 2002;168:434–442. doi: 10.4049/jimmunol.168.1.434. PubMed DOI
Xia W., Zhu J., Wang X., Tang Y., Zhou P., Hou M., Li S. ANXA1 directs Schwann cells proliferation and migration to accelerate nerve regeneration through the FPR2/AMPK pathway. FASEB J. 2020;34:13993–14005. doi: 10.1096/fj.202000726RRR. PubMed DOI
Chen K., Bao Z., Gong W., Tang P., Yoshimura T., Wang J.M. Regulation of inflammation by members of the formyl-peptide receptor family. J. Autoimmun. 2017;85:64–77. doi: 10.1016/j.jaut.2017.06.012. PubMed DOI PMC
Korimová A., Klusáková I., Hradilová-Svíženská I., Kohoutková M., Joukal M., Dubový P. Mitochondrial Damage-Associated Molecular Patterns of Injured Axons Induce Outgrowth of Schwann Cell Processes. Front. Cell. Neurosci. 2018;12:457. doi: 10.3389/fncel.2018.00457. PubMed DOI PMC
Hai M., Muja N., DeVries G.H., Quarles R.H., Patel P.I. Comparative analysis of Schwann cell lines as model systems for myelin gene transcription studies. J. Neurosci. Res. 2002;69:497–508. doi: 10.1002/jnr.10327. PubMed DOI
Geuna S., Raimondo S., Fregnan F., Haastert-Talini K., Grothe C. In vitro models for peripheral nerve regeneration. Eur. J. Neurosci. 2016;43:287–296. doi: 10.1111/ejn.13054. PubMed DOI
Filep J.G., Sekheri M., El Kebir D. Targeting formyl peptide receptors to facilitate the resolution of inflammation. Eur. J. Pharmacol. 2018;833:339–348. doi: 10.1016/j.ejphar.2018.06.025. PubMed DOI
Kigerl K.A., de Rivero Vaccari J.P., Dietrich W.D., Popovich P.G., Keane R.W. Pattern recognition receptors and central nervous system repair. Exp. Neurol. 2014;258:5–16. doi: 10.1016/j.expneurol.2014.01.001. PubMed DOI PMC
Raabe C.A., Gröper J., Rescher U. Biased perspectives on formyl peptide receptors. Biochim. Biophys. Acta BBA Mol. Cell Res. 2019;1866:305–316. doi: 10.1016/j.bbamcr.2018.11.015. PubMed DOI
Riley J.S., Tait S.W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020;21:e49799. doi: 10.15252/embr.201949799. PubMed DOI PMC
Iribarren P., Chen K., Hu J., Gong W., Cho E.H., Lockert S., Uranchimeg B., Wang J.M. CpG-containing oligodeoxynucleotide promotes microglial cell uptake of amyloid β 1–42 peptide by up-regulating the expression of the G-protein-coupled receptor mFPR2. FASEB J. 2005;19:2032–2034. doi: 10.1096/fj.05-4578fje. PubMed DOI
Chen K., Huang J., Liu Y., Gong W., Cui Y., Wang J.M. Synergy of TRIF-dependent TLR3 and MyD88-dependent TLR7 in up-regulating expression of mouse FPR2, a promiscuous G-protein-coupled receptor, in microglial cells. J. Neuroimmunol. 2009;213:69–77. doi: 10.1016/j.jneuroim.2009.05.018. PubMed DOI PMC
Hacker G., Redecke V., Hacker H. Activation of the immune system by bacterial CpG-DNA. Immunology. 2002;105:245–251. doi: 10.1046/j.0019-2805.2001.01350.x. PubMed DOI PMC
Takeshita F., Gursel I., Ishii K.J., Suzuki K., Gursel M., Klinman D.M. Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. Semin. Immunol. 2004;16:17–22. doi: 10.1016/j.smim.2003.10.009. PubMed DOI
Pineau I., Lacroix S. Endogenous signals initiating inflammation in the injured nervous system. Glia. 2009;57:351–361. doi: 10.1002/glia.20763. PubMed DOI
Shih R.-H., Wang C.-Y., Yang C.-M. NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review. Front. Mol. Neurosci. 2015;8:77. doi: 10.3389/fnmol.2015.00077. PubMed DOI PMC
Dufton N., Hannon R., Brancaleone V., Dalli J., Patel H.B., Gray M., D’Acquisto F., Buckingham J.C., Perretti M., Flower R.J. Anti-Inflammatory Role of the Murine Formyl-Peptide Receptor 2: Ligand-Specific Effects on Leukocyte Responses and Experimental Inflammation. J. Immunol. 2010;184:2611–2619. doi: 10.4049/jimmunol.0903526. PubMed DOI PMC
Le Y., Murphy P.M., Wang J.M. Formyl-peptide receptors revisited. Trends Immunol. 2002;23:541–548. doi: 10.1016/S1471-4906(02)02316-5. PubMed DOI
Migeotte I., Communi D., Parmentier M. Formyl peptide receptors: A promiscuous subfamily of G protein-coupled receptors controlling immune responses. Cytokine Growth Factor Rev. 2006;17:501–519. doi: 10.1016/j.cytogfr.2006.09.009. PubMed DOI
Hughes C.E., Nibbs R.J.B. A guide to chemokines and their receptors. FEBS J. 2018;285:2944–2971. doi: 10.1111/febs.14466. PubMed DOI PMC
Busillo J.M., Armando S., Sengupta R., Meucci O., Bouvier M., Benovic J.L. Site-specific Phosphorylation of CXCR4 Is Dynamically Regulated by Multiple Kinases and Results in Differential Modulation of CXCR4 Signaling. J. Biol. Chem. 2010;285:7805–7817. doi: 10.1074/jbc.M109.091173. PubMed DOI PMC
Cattaneo F., Russo R., Castaldo M., Chambery A., Zollo C., Esposito G., Pedone P.V., Ammendola R. Phosphoproteomic analysis sheds light on intracellular signaling cascades triggered by Formyl-Peptide Receptor 2. Sci. Rep. 2019;9:17894. doi: 10.1038/s41598-019-54502-6. PubMed DOI PMC
Le Y., Li B., Gong W., Shen W., Hu J., Dunlop N.M., Oppenheim J.J., Wang J.M. Novel pathophysiological role of classical chemotactic peptide receptors and their communications with chemokine receptors. Immunol. Rev. 2000;177:185–194. doi: 10.1034/j.1600-065X.2000.17704.x. PubMed DOI
Jesaitis A.J., Klotz K.-N. Cytoskeletal regulation of chemotactic receptors: Molecular complexation of N-formyl peptide receptors with G proteins and actin. Eur. J. Haematol. 2009;51:288–293. doi: 10.1111/j.1600-0609.1993.tb01610.x. PubMed DOI