Complexity-Based Decoding of the Coupling Among Heart Rate Variability (HRV) and Walking Path
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33324242
PubMed Central
PMC7723866
DOI
10.3389/fphys.2020.602027
Knihovny.cz E-zdroje
- Klíčová slova
- complexity, fractal exponent, heart rate variability, sample entropy, walking path,
- Publikační typ
- časopisecké články MeSH
Walking is an everyday activity in our daily life. Because walking affects heart rate variability, in this research, for the first time, we analyzed the coupling among the alterations of the complexity of walking paths and heart rate. We benefited from the fractal theory and sample entropy to evaluate the influence of the complexity of paths on the complexity of heart rate variability (HRV) during walking. We calculated the fractal exponent and sample entropy of the R-R time series for nine participants who walked on four paths with various complexities. The findings showed a strong coupling among the alterations of fractal dimension (an indicator of complexity) of HRV and the walking paths. Besides, the result of the analysis of sample entropy also verified the obtained results from the fractal analysis. In further studies, we can analyze the coupling among the alterations of the complexities of other physiological signals and walking paths.
Zobrazit více v PubMed
Acharya U. R., Kannathal N., Sing O. W., Ping L. Y., Chua T. (2004). Heart rate analysis in normal subjects of various age groups. Biomed. Eng. Online 3:24. PubMed PMC
Al-Angari H. M., Sahakian A. V. (2007). Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome. IEEE Trans. Biomed. Eng. 54 1900–1904. 10.1109/tbme.2006.889772 PubMed DOI
Brenner I. K. M., Brown C. A., Hains S. J. M., Tranmer J., Zelt D. T., Brown P. M. (2020). Low-Intensity Exercise Training Increases Heart Rate Variability in Patients With Peripheral Artery Disease. Biol. Res. Nurs. 22 24–33. 10.1177/1099800419884642 PubMed DOI
Chau N. P., Chanudet X., Bauduceau B., Gautier D., Larroque P. (1993). Fractal dimension of heart rate and blood pressure in healthy subjects and in diabetic subjects. Blood Press 2 101–107. 10.3109/08037059309077536 PubMed DOI
Chen C., Jin Y., Lo I. L., Zhao H., Sun B., Zhao Q., et al. (2017). Complexity Change in Cardiovascular Disease. Int. J. Biol. Sci. 13 1320–1328. 10.7150/ijbs.19462 PubMed DOI PMC
Corrêa F. R., da Silva Alves M. A., Bianchim M. S., Crispim de Aquino A., Guerra R. L., Dourado V. Z. (2013). Heart rate variability during 6-min walk test in adults aged 40 years and older. Int. J. Sports Med. 34 111–115. 10.1055/s-0032-1321888 PubMed DOI
D’Addio G., Accardo A., Corbi G., Rengo F. (2007). “Fractal analysis of heart rate variability in COPD patients,” in 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007. IFMBE Proceedings, Vol. 16 eds Jarm T., Kramar P., Zupanic A. (Berlin: Springer; ).
de Brito J. N., Pope Z. C., Mitchell N. R., Schneider I. E., Larson J. M., Horton T. H., et al. (2020). The effect of green walking on heart rate variability: A pilot crossover study. Environ. Res. 185:109408. 10.1016/j.envres.2020.109408 PubMed DOI PMC
Figure 3-3 (2019). Shimmer-ECG-heart-measurements. Ireland: Realtime Technologies Ltd; Available Online at: https://bmslab.utwente.nl/wp-content/uploads/2019/12/Shimmer-ECG-heart-measurements.pdf
Han (2020). Fractal Volatility of Financial Time Series. MATLAB Central File Exchange Available online at: https://www.mathworks.com/matlabcentral/fileexchange/31951-fractal-volatility-of-financial-time-series (accessed November 11, 2020).
Hooper T. L., Dunn D. M., Props J. E., Bruce B. A., Sawyer S. F., Daniel J. A. (2004). The effects of graded forward and backward walking on heart rate and oxygen consumption. J. Orthop. Sports Phys. Ther. 34 65–71. 10.2519/jospt.2004.34.2.65 PubMed DOI
Javorka M., Zila I., Balharek T., Javorka K. (2002). Heart rate recovery after exercise: relations to heart rate variability and complexity. Braz. J. Med. Biol. Res. 35 991–1000. 10.1590/s0100-879x2002000800018 PubMed DOI
Kamal S. M., Sim S., Tee R., Nathan V., Aghasian E., Namazi H. (2020). Decoding of the relationship between human brain activity and walking paths. Technol. Health Care 28 381–390. PubMed
Lake E., Richman J. S., Griffin M. P., Moorman J. R. (2002). Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283 R789–R797. PubMed
Leicht A. S., Crowther R. G., Golledge J. (2011). Influence of peripheral arterial disease and supervised walking on heart rate variability. J. Vasc. Surg. 54 1352–1359. 10.1016/j.jvs.2011.05.027 PubMed DOI
Mäkikallio T. H., Huikuri H. V., Mäkikallio A., Sourander L. B., Mitrani R. D., Castellanos A., et al. (2001). Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. J. Am. Coll. Cardiol. 37 1395–1402. 10.1016/s0735-1097(01)01171-8 PubMed DOI
Motooka M., Koike H., Yokoyama T., Kennedy N. L. (2006). Effect of dog-walking on autonomic nervous activity in senior citizens. Med. J. Aust. 184 60–63. 10.5694/j.1326-5377.2006.tb00116.x PubMed DOI
Parkkari J., Natri A., Kannus P., Mänttäri A., Laukkanen R., Haapasalo H., et al. (2000). A controlled trial of the health benefits of regular walking on a golf course. Am. J. Med. 109 102–108. 10.1016/s0002-9343(00)00455-1 PubMed DOI
Saevereid H. A., Schnohr P., Prescott E. (2014). Speed and Duration of Walking and Other Leisure Time Physical Activity and the Risk of Heart Failure: A Prospective Cohort Study from the Copenhagen City Heart Study. PLoS One. 9:e89909. 10.1371/journal.pone.0089909 PubMed DOI PMC
Sen J., McGill D. (2018). Fractal analysis of heart rate variability as a predictor of mortality: A systematic review and meta-analysis. Chaos 28:072101 10.1063/1.5038818 PubMed DOI
Shi B., Wang L., Yan C., Chen D., Liu M., Li P. (2019). Nonlinear heart rate variability biomarkers for gastric cancer severity: A pilot study. Sci. Rep. 9:13833. PubMed PMC
Shi B., Zhang Y., Yuan C., Wang S., Li P. (2017). Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular Walking. Entropy 19:568 10.3390/e19100568 DOI
Soares-Miranda L., Sattelmair J., Chaves P., Duncan G., Siscovick D. S., Stein P. K., et al. (2014). Physical Activity and Heart Rate Variability in Older Adults: The Cardiovascular Health Study. Circulation 129 2100–2110. 10.1161/circulationaha.113.005361 PubMed DOI PMC
Soundirarajan M., Babini M., Sim S., Nathan V., Subasi A., Namazi H. (2020). Analysis of brain-facial muscle connection in the static fractal visual stimulation. Int. J. Imaging Syst. Technol. 2020:ima.22480 10.1002/ima.22480 DOI
Togo F., Yamamoto Y. (2001). Decreased fractal component of human heart rate variability during non-REM sleep. Am. J. Physiol. Heart Circ. Physiol. 280 H17–H21. PubMed
Tulppo M. P., Mäkikallio T. H., Seppänen T., Shoemaker K., Tutungi E., Hughson R. L., et al. (2001). Effects of pharmacological adrenergic and vagal modulation on fractal heart rate dynamics. Clin. Physiol. 21 515–523. 10.1046/j.1365-2281.2001.00344.x PubMed DOI
Tuzcu V., Nas S. (2005). “Sample entropy analysis of heart rhythm following cardiac transplantation,” in 2005 IEEE International Conference on Systems, Vol. 1 (Waikoloa, HI: Man and Cybernetics; ), 198–202. 10.1109/ICSMC.2005.1571145 DOI
Utriainen K. T., Airaksinen J. K., Polo O. J., Scheinin H., Laitio R. M., Leino K. A., et al. (2018). Alterations in heart rate variability in patients with peripheral arterial disease requiring surgical revascularization have limited association with postoperative major adverse cardiovascular and cerebrovascular events. PLoS One 13:e0203519. 10.1371/journal.pone.0203519 PubMed DOI PMC
Watanabe E., Kiyono K., Hayano J., Yamamoto Y., Inamasu J., Yamamoto M., et al. (2015). Multiscale Entropy of the Heart Rate Variability for the Prediction of an Ischemic Stroke in Patients with Permanent Atrial Fibrillation. PLoS One 10:e0137144. 10.1371/journal.pone.0137144 PubMed DOI PMC
Weippert M., Behrens M., Rieger A., Behrens K. (2014). Sample Entropy and Traditional Measures of Heart Rate Dynamics Reveal Different Modes of Cardiovascular Control During Low Intensity Exercise. Entropy 16 5698–5711. 10.3390/e16115698 DOI