Complexity-Based Decoding of the Coupling Among Heart Rate Variability (HRV) and Walking Path

. 2020 ; 11 () : 602027. [epub] 20201125

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33324242

Walking is an everyday activity in our daily life. Because walking affects heart rate variability, in this research, for the first time, we analyzed the coupling among the alterations of the complexity of walking paths and heart rate. We benefited from the fractal theory and sample entropy to evaluate the influence of the complexity of paths on the complexity of heart rate variability (HRV) during walking. We calculated the fractal exponent and sample entropy of the R-R time series for nine participants who walked on four paths with various complexities. The findings showed a strong coupling among the alterations of fractal dimension (an indicator of complexity) of HRV and the walking paths. Besides, the result of the analysis of sample entropy also verified the obtained results from the fractal analysis. In further studies, we can analyze the coupling among the alterations of the complexities of other physiological signals and walking paths.

Zobrazit více v PubMed

Acharya U. R., Kannathal N., Sing O. W., Ping L. Y., Chua T. (2004). Heart rate analysis in normal subjects of various age groups. Biomed. Eng. Online 3:24. PubMed PMC

Al-Angari H. M., Sahakian A. V. (2007). Use of sample entropy approach to study heart rate variability in obstructive sleep apnea syndrome. IEEE Trans. Biomed. Eng. 54 1900–1904. 10.1109/tbme.2006.889772 PubMed DOI

Brenner I. K. M., Brown C. A., Hains S. J. M., Tranmer J., Zelt D. T., Brown P. M. (2020). Low-Intensity Exercise Training Increases Heart Rate Variability in Patients With Peripheral Artery Disease. Biol. Res. Nurs. 22 24–33. 10.1177/1099800419884642 PubMed DOI

Chau N. P., Chanudet X., Bauduceau B., Gautier D., Larroque P. (1993). Fractal dimension of heart rate and blood pressure in healthy subjects and in diabetic subjects. Blood Press 2 101–107. 10.3109/08037059309077536 PubMed DOI

Chen C., Jin Y., Lo I. L., Zhao H., Sun B., Zhao Q., et al. (2017). Complexity Change in Cardiovascular Disease. Int. J. Biol. Sci. 13 1320–1328. 10.7150/ijbs.19462 PubMed DOI PMC

Corrêa F. R., da Silva Alves M. A., Bianchim M. S., Crispim de Aquino A., Guerra R. L., Dourado V. Z. (2013). Heart rate variability during 6-min walk test in adults aged 40 years and older. Int. J. Sports Med. 34 111–115. 10.1055/s-0032-1321888 PubMed DOI

D’Addio G., Accardo A., Corbi G., Rengo F. (2007). “Fractal analysis of heart rate variability in COPD patients,” in 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing 2007. IFMBE Proceedings, Vol. 16 eds Jarm T., Kramar P., Zupanic A. (Berlin: Springer; ).

de Brito J. N., Pope Z. C., Mitchell N. R., Schneider I. E., Larson J. M., Horton T. H., et al. (2020). The effect of green walking on heart rate variability: A pilot crossover study. Environ. Res. 185:109408. 10.1016/j.envres.2020.109408 PubMed DOI PMC

Figure 3-3 (2019). Shimmer-ECG-heart-measurements. Ireland: Realtime Technologies Ltd; Available Online at: https://bmslab.utwente.nl/wp-content/uploads/2019/12/Shimmer-ECG-heart-measurements.pdf

Han (2020). Fractal Volatility of Financial Time Series. MATLAB Central File Exchange Available online at: https://www.mathworks.com/matlabcentral/fileexchange/31951-fractal-volatility-of-financial-time-series (accessed November 11, 2020).

Hooper T. L., Dunn D. M., Props J. E., Bruce B. A., Sawyer S. F., Daniel J. A. (2004). The effects of graded forward and backward walking on heart rate and oxygen consumption. J. Orthop. Sports Phys. Ther. 34 65–71. 10.2519/jospt.2004.34.2.65 PubMed DOI

Javorka M., Zila I., Balharek T., Javorka K. (2002). Heart rate recovery after exercise: relations to heart rate variability and complexity. Braz. J. Med. Biol. Res. 35 991–1000. 10.1590/s0100-879x2002000800018 PubMed DOI

Kamal S. M., Sim S., Tee R., Nathan V., Aghasian E., Namazi H. (2020). Decoding of the relationship between human brain activity and walking paths. Technol. Health Care 28 381–390. PubMed

Lake E., Richman J. S., Griffin M. P., Moorman J. R. (2002). Sample entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr. Comp. Physiol. 283 R789–R797. PubMed

Leicht A. S., Crowther R. G., Golledge J. (2011). Influence of peripheral arterial disease and supervised walking on heart rate variability. J. Vasc. Surg. 54 1352–1359. 10.1016/j.jvs.2011.05.027 PubMed DOI

Mäkikallio T. H., Huikuri H. V., Mäkikallio A., Sourander L. B., Mitrani R. D., Castellanos A., et al. (2001). Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects. J. Am. Coll. Cardiol. 37 1395–1402. 10.1016/s0735-1097(01)01171-8 PubMed DOI

Motooka M., Koike H., Yokoyama T., Kennedy N. L. (2006). Effect of dog-walking on autonomic nervous activity in senior citizens. Med. J. Aust. 184 60–63. 10.5694/j.1326-5377.2006.tb00116.x PubMed DOI

Parkkari J., Natri A., Kannus P., Mänttäri A., Laukkanen R., Haapasalo H., et al. (2000). A controlled trial of the health benefits of regular walking on a golf course. Am. J. Med. 109 102–108. 10.1016/s0002-9343(00)00455-1 PubMed DOI

Saevereid H. A., Schnohr P., Prescott E. (2014). Speed and Duration of Walking and Other Leisure Time Physical Activity and the Risk of Heart Failure: A Prospective Cohort Study from the Copenhagen City Heart Study. PLoS One. 9:e89909. 10.1371/journal.pone.0089909 PubMed DOI PMC

Sen J., McGill D. (2018). Fractal analysis of heart rate variability as a predictor of mortality: A systematic review and meta-analysis. Chaos 28:072101 10.1063/1.5038818 PubMed DOI

Shi B., Wang L., Yan C., Chen D., Liu M., Li P. (2019). Nonlinear heart rate variability biomarkers for gastric cancer severity: A pilot study. Sci. Rep. 9:13833. PubMed PMC

Shi B., Zhang Y., Yuan C., Wang S., Li P. (2017). Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular Walking. Entropy 19:568 10.3390/e19100568 DOI

Soares-Miranda L., Sattelmair J., Chaves P., Duncan G., Siscovick D. S., Stein P. K., et al. (2014). Physical Activity and Heart Rate Variability in Older Adults: The Cardiovascular Health Study. Circulation 129 2100–2110. 10.1161/circulationaha.113.005361 PubMed DOI PMC

Soundirarajan M., Babini M., Sim S., Nathan V., Subasi A., Namazi H. (2020). Analysis of brain-facial muscle connection in the static fractal visual stimulation. Int. J. Imaging Syst. Technol. 2020:ima.22480 10.1002/ima.22480 DOI

Togo F., Yamamoto Y. (2001). Decreased fractal component of human heart rate variability during non-REM sleep. Am. J. Physiol. Heart Circ. Physiol. 280 H17–H21. PubMed

Tulppo M. P., Mäkikallio T. H., Seppänen T., Shoemaker K., Tutungi E., Hughson R. L., et al. (2001). Effects of pharmacological adrenergic and vagal modulation on fractal heart rate dynamics. Clin. Physiol. 21 515–523. 10.1046/j.1365-2281.2001.00344.x PubMed DOI

Tuzcu V., Nas S. (2005). “Sample entropy analysis of heart rhythm following cardiac transplantation,” in 2005 IEEE International Conference on Systems, Vol. 1 (Waikoloa, HI: Man and Cybernetics; ), 198–202. 10.1109/ICSMC.2005.1571145 DOI

Utriainen K. T., Airaksinen J. K., Polo O. J., Scheinin H., Laitio R. M., Leino K. A., et al. (2018). Alterations in heart rate variability in patients with peripheral arterial disease requiring surgical revascularization have limited association with postoperative major adverse cardiovascular and cerebrovascular events. PLoS One 13:e0203519. 10.1371/journal.pone.0203519 PubMed DOI PMC

Watanabe E., Kiyono K., Hayano J., Yamamoto Y., Inamasu J., Yamamoto M., et al. (2015). Multiscale Entropy of the Heart Rate Variability for the Prediction of an Ischemic Stroke in Patients with Permanent Atrial Fibrillation. PLoS One 10:e0137144. 10.1371/journal.pone.0137144 PubMed DOI PMC

Weippert M., Behrens M., Rieger A., Behrens K. (2014). Sample Entropy and Traditional Measures of Heart Rate Dynamics Reveal Different Modes of Cardiovascular Control During Low Intensity Exercise. Entropy 16 5698–5711. 10.3390/e16115698 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...