Transplantation of Neural Precursors Derived from Induced Pluripotent Cells Preserve Perineuronal Nets and Stimulate Neural Plasticity in ALS Rats
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
MR/R004463/1
Medical Research Council - United Kingdom
MR/R004544/1
Medical Research Council - United Kingdom
CZ.02.1.01/0.0/0.0/15_003/0000419
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33339362
PubMed Central
PMC7766921
DOI
10.3390/ijms21249593
PII: ijms21249593
Knihovny.cz E-resources
- Keywords
- ALS, iPS, motoneuron death, neurodegeneration, plasticity, proteoglycans, stem cells, transplantation,
- MeSH
- Amyotrophic Lateral Sclerosis therapy MeSH
- Induced Pluripotent Stem Cells cytology MeSH
- Rats MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Neural Stem Cells cytology metabolism transplantation MeSH
- Neuronal Plasticity * MeSH
- Nerve Growth Factors genetics metabolism MeSH
- Peripheral Nerves physiology MeSH
- Rats, Sprague-Dawley MeSH
- Apoptosis Regulatory Proteins genetics metabolism MeSH
- Nerve Regeneration MeSH
- Tenascin genetics metabolism MeSH
- Stem Cell Transplantation methods MeSH
- Versicans genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nerve Growth Factors MeSH
- Apoptosis Regulatory Proteins MeSH
- Tenascin MeSH
- Versicans MeSH
A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) treatment is stem cell therapy. Neural progenitors derived from induced pluripotent cells (NP-iPS) might rescue or replace dying motoneurons (MNs). However, the mechanisms responsible for the beneficial effect are not fully understood. The aim here was to investigate the mechanism by studying the effect of intraspinally injected NP-iPS into asymptomatic and early symptomatic superoxide dismutase (SOD)1G93A transgenic rats. Prior to transplantation, NP-iPS were characterized in vitro for their ability to differentiate into a neuronal phenotype. Motor functions were tested in all animals, and the tissue was analyzed by immunohistochemistry, qPCR, and Western blot. NP-iPS transplantation significantly preserved MNs, slowed disease progression, and extended the survival of all treated animals. The dysregulation of spinal chondroitin sulfate proteoglycans was observed in SOD1G93A rats at the terminal stage. NP-iPS application led to normalized host genes expression (versican, has-1, tenascin-R, ngf, igf-1, bdnf, bax, bcl-2, and casp-3) and the protection of perineuronal nets around the preserved MNs. In the host spinal cord, transplanted cells remained as progenitors, many in contact with MNs, but they did not differentiate. The findings suggest that NP-iPS demonstrate neuroprotective properties by regulating local gene expression and regulate plasticity by modulating the central nervous system (CNS) extracellular matrix such as perineuronal nets (PNNs).
See more in PubMed
Renton A.E., Chio A., Traynor B.J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 2014;17:17–23. doi: 10.1038/nn.3584. PubMed DOI PMC
Riva N., Agosta F., Lunetta C., Filippi M., Quattrini A. Recent advances in amyotrophic lateral sclerosis. J. Neurol. 2016;263:1241–1254. doi: 10.1007/s00415-016-8091-6. PubMed DOI PMC
Bunton-Stasyshyn R.K., Saccon R.A., Fratta P., Fisher E.M. Sod1 function and its implications for amyotrophic lateral sclerosis pathology: New and renascent themes. Neuroscientist. 2015;21:519–529. doi: 10.1177/1073858414561795. PubMed DOI
Burkhardt M.F., Martinez F.J., Wright S., Ramos C., Volfson D., Mason M., Garnes J., Dang V., Lievers J., Shoukat-Mumtaz U., et al. A cellular model for sporadic als using patient-derived induced pluripotent stem cells. Mol. Cell. Neurosci. 2013;56:355–364. doi: 10.1016/j.mcn.2013.07.007. PubMed DOI PMC
Oksanen M., Lehtonen S., Jaronen M., Goldsteins G., Hamalainen R.H., Koistinaho J. Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol. Life Sci. 2019;76:2739–2760. doi: 10.1007/s00018-019-03111-7. PubMed DOI PMC
Tyzack G.E., Hall C.E., Sibley C.R., Cymes T., Forostyak S., Carlino G., Meyer I.F., Schiavo G., Zhang S.C., Gibbons G.M., et al. A neuroprotective astrocyte state is induced by neuronal signal ephb1 but fails in als models. Nat. Commun. 2017;8:1164. doi: 10.1038/s41467-017-01283-z. PubMed DOI PMC
Almad A.A., Doreswamy A., Gross S.K., Richard J.P., Huo Y., Haughey N., Maragakis N.J. Connexin 43 in astrocytes contributes to motor neuron toxicity in amyotrophic lateral sclerosis. Glia. 2016;64:1154–1169. doi: 10.1002/glia.22989. PubMed DOI PMC
Yamanaka K., Komine O. The multi-dimensional roles of astrocytes in als. Neurosci. Res. 2018;126:31–38. doi: 10.1016/j.neures.2017.09.011. PubMed DOI
Kondo T., Funayama M., Tsukita K., Hotta A., Yasuda A., Nori S., Kaneko S., Nakamura M., Takahashi R., Okano H., et al. Focal transplantation of human ipsc-derived glial-rich neural progenitors improves lifespan of als mice. Stem Cell Rep. 2014;3:242–249. doi: 10.1016/j.stemcr.2014.05.017. PubMed DOI PMC
Sareen D., Gowing G., Sahabian A., Staggenborg K., Paradis R., Avalos P., Latter J., Ornelas L., Garcia L., Svendsen C.N. Human induced pluripotent stem cells are a novel source of neural progenitor cells (inpcs) that migrate and integrate in the rodent spinal cord. J. Comp. Neurol. 2014;522:2707–2728. doi: 10.1002/cne.23578. PubMed DOI PMC
Richard J.P., Maragakis N.J. Induced pluripotent stem cells from als patients for disease modeling. Brain Res. 2015;1607:15–25. doi: 10.1016/j.brainres.2014.09.017. PubMed DOI PMC
Zhang Y., Pak C., Han Y., Ahlenius H., Zhang Z., Chanda S., Marro S., Patzke C., Acuna C., Covy J., et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78:785–798. doi: 10.1016/j.neuron.2013.05.029. PubMed DOI PMC
Hu B.Y., Zhang S.C. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat. Protoc. 2009;4:1295–1304. doi: 10.1038/nprot.2009.127. PubMed DOI PMC
Meyer K., Ferraiuolo L., Miranda C.J., Likhite S., McElroy S., Renusch S., Ditsworth D., Lagier-Tourenne C., Smith R.A., Ravits J., et al. Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic als. Proc. Natl. Acad. Sci. USA. 2014;111:829–832. doi: 10.1073/pnas.1314085111. PubMed DOI PMC
Amemori T., Ruzicka J., Romanyuk N., Jhanwar-Uniyal M., Sykova E., Jendelova P. Comparison of intraspinal and intrathecal implantation of induced pluripotent stem cell-derived neural precursors for the treatment of spinal cord injury in rats. Stem Cell Res. Ther. 2015;6:257. doi: 10.1186/s13287-015-0255-2. PubMed DOI PMC
Forostyak O., Romanyuk N., Verkhratsky A., Sykova E., Dayanithi G. Plasticity of calcium signaling cascades in human embryonic stem cell-derived neural precursors. Stem Cells Dev. 2013;22:1506–1521. doi: 10.1089/scd.2012.0624. PubMed DOI PMC
Romanyuk N., Amemori T., Turnovcova K., Prochazka P., Onteniente B., Sykova E., Jendelova P. Beneficial effect of human induced pluripotent stem cell-derived neural precursors in spinal cord injury repair. Cell Transpl. 2015;24:1781–1797. doi: 10.3727/096368914X684042. PubMed DOI
Sekiya T., Holley M.C., Hashido K., Ono K., Shimomura K., Horie R.T., Hamaguchi K., Yoshida A., Sakamoto T., Ito J. Cells transplanted onto the surface of the glial scar reveal hidden potential for functional neural regeneration. Proc. Natl. Acad. Sci. USA. 2015;112:E3431–E3440. doi: 10.1073/pnas.1501835112. PubMed DOI PMC
Yu D.X., Marchetto M.C., Gage F.H. Therapeutic translation of ipscs for treating neurological disease. Cell Stem Cell. 2013;12:678–688. doi: 10.1016/j.stem.2013.05.018. PubMed DOI
Feldman E.L., Boulis N.M., Hur J., Johe K., Rutkove S.B., Federici T., Polak M., Bordeau J., Sakowski S.A., Glass J.D. Intraspinal neural stem cell transplantation in amyotrophic lateral sclerosis: Phase 1 trial outcomes. Ann. Neurol. 2014;75:363–373. doi: 10.1002/ana.24113. PubMed DOI PMC
Forostyak S., Homola A., Turnovcova K., Svitil P., Jendelova P., Sykova E. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in sod1 rats and amends the course of als. Stem Cells. 2014;32:3163–3172. doi: 10.1002/stem.1812. PubMed DOI PMC
Forostyak S., Jendelova P., Kapcalova M., Arboleda D., Sykova E. Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy. 2011;13:1036–1046. doi: 10.3109/14653249.2011.592521. PubMed DOI
Popescu I.R., Nicaise C., Liu S., Bisch G., Knippenberg S., Daubie V., Bohl D., Pochet R. Neural progenitors derived from human induced pluripotent stem cells survive and differentiate upon transplantation into a rat model of amyotrophic lateral sclerosis. Stem Cells Transl. Med. 2013;2:167–174. doi: 10.5966/sctm.2012-0042. PubMed DOI PMC
Xu L., Ryugo D.K., Pongstaporn T., Johe K., Koliatsos V.E. Human neural stem cell grafts in the spinal cord of sod1 transgenic rats: Differentiation and structural integration into the segmental motor circuitry. J. Comp. Neurol. 2009;514:297–309. doi: 10.1002/cne.22022. PubMed DOI PMC
Polentes J., Jendelova P., Cailleret M., Braun H., Romanyuk N., Tropel P., Brenot M., Itier V., Seminatore C., Baldauf K., et al. Human induced pluripotent stem cells improve stroke outcome and reduce secondary degeneration in the recipient brain. Cell Transpl. 2012;21:2587–2602. doi: 10.3727/096368912X653228. PubMed DOI
Cabungcal J.H., Steullet P., Morishita H., Kraftsik R., Cuenod M., Hensch T.K., Do K.Q. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc. Natl. Acad. Sci. USA. 2013;110:9130–9135. doi: 10.1073/pnas.1300454110. PubMed DOI PMC
Suttkus A., Morawski M., Arendt T. Protective properties of neural extracellular matrix. Mol. Neurobiol. 2014;53:73–82. doi: 10.1007/s12035-014-8990-4. PubMed DOI
Kwok J.C., Dick G., Wang D., Fawcett J.W. Extracellular matrix and perineuronal nets in cns repair. Dev. Neurobiol. 2011;71:1073–1089. doi: 10.1002/dneu.20974. PubMed DOI
Ganz T. Hepcidin in iron metabolism. Curr. Opin. Hematol. 2004;11:251–254. doi: 10.1097/00062752-200407000-00004. PubMed DOI
Lu H., Lian L., Shi D., Zhao H., Dai Y. Hepcidin promotes osteogenic differentiation through the bone morphogenetic protein 2/small mothers against decapentaplegic and mitogen-activated protein kinase/p38 signaling pathways in mesenchymal stem cells. Mol. Med. Rep. 2015;11:143–150. doi: 10.3892/mmr.2014.2769. PubMed DOI PMC
Raha-Chowdhury R., Raha A.A., Zhao J.W., Stott S., Bomford A. F1000 Posters 2014. Volume 5 The New York Academy of Science; New York, NY, USA: 2014. Iron regulatory protein hepcidin present in embryonic brain and increased in the glial scar after mechanical injury. Demyelination and Remyelination: From Mechanism to Therapy.
Hutchinson S.A., Cheesman S.E., Hale L.A., Boone J.Q., Eisen J.S. Nkx6 proteins specify one zebrafish primary motoneuron subtype by regulating late islet1 expression. Development. 2007;134:1671–1677. doi: 10.1242/dev.02826. PubMed DOI PMC
Raha-Chowdhury R., Raha A.A., Forostyak S., Zhao J.W., Stott S.R., Bomford A. Expression and cellular localization of hepcidin mrna and protein in normal rat brain. BMC Neurosci. 2015;16:24. doi: 10.1186/s12868-015-0161-7. PubMed DOI PMC
Wyatt T.J., Rossi S.L., Siegenthaler M.M., Frame J., Robles R., Nistor G., Keirstead H.S. Human motor neuron progenitor transplantation leads to endogenous neuronal sparing in 3 models of motor neuron loss. Stem Cells Int. 2011;2011:207230. doi: 10.4061/2011/207230. PubMed DOI PMC
Lopez-Gonzalez R., Kunckles P., Velasco I. Transient recovery in a rat model of familial amyotrophic lateral sclerosis after transplantation of motor neurons derived from mouse embryonic stem cells. Cell Transpl. 2009;18:1171–1181. doi: 10.3727/096368909X12483162197123. PubMed DOI
Lepore A.C., Rauck B., Dejea C., Pardo A.C., Rao M.S., Rothstein J.D., Maragakis N.J. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat. Neurosci. 2008;11:1294–1301. doi: 10.1038/nn.2210. PubMed DOI PMC
Xu L., Yan J., Chen D., Welsh A.M., Hazel T., Johe K., Hatfield G., Koliatsos V.E. Human neural stem cell grafts ameliorate motor neuron disease in sod-1 transgenic rats. Transplantation. 2006;82:865–875. doi: 10.1097/01.tp.0000235532.00920.7a. PubMed DOI
Forostyak S., Jendelova P., Sykova E. The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie. 2013;95:2257–2270. doi: 10.1016/j.biochi.2013.08.004. PubMed DOI
Ziv Y., Avidan H., Pluchino S., Martino G., Schwartz M. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury. Proc. Natl. Acad. Sci. USA. 2006;103:13174–13179. doi: 10.1073/pnas.0603747103. PubMed DOI PMC
Butovsky O., Ziv Y., Schwartz A., Landa G., Talpalar A.E., Pluchino S., Martino G., Schwartz M. Microglia activated by il-4 or ifn-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell. Neurosci. 2006;31:149–160. doi: 10.1016/j.mcn.2005.10.006. PubMed DOI
Devlin A.C., Burr K., Borooah S., Foster J.D., Cleary E.M., Geti I., Vallier L., Shaw C.E., Chandran S., Miles G.B. Human ipsc-derived motoneurons harbouring tardbp or c9orf72 als mutations are dysfunctional despite maintaining viability. Nat. Commun. 2015;6:5999. doi: 10.1038/ncomms6999. PubMed DOI PMC
Kwok J.C., Afshari F., Garcia-Alias G., Fawcett J.W. Proteoglycans in the central nervous system: Plasticity, regeneration and their stimulation with chondroitinase abc. Restor. Neurol. Neurosci. 2008;26:131–145. PubMed
Rehorova M., Vargova I., Forostyak S., Vackova I., Turnovcova K., Kupcova Skalnikova H., Vodicka P., Kubinova S., Sykova E., Jendelova P. A combination of intrathecal and intramuscular application of human mesenchymal stem cells partly reduces the activation of necroptosis in the spinal cord of sod1(g93a) rats. Stem Cells Transl. Med. 2019;8:535–547. doi: 10.1002/sctm.18-0223. PubMed DOI PMC
Jirak D., Ziolkowska N., Turnovcova K., Karova K., Sykova E., Jendelova P., Romanyuk N. Metabolic changes in focal brain ischemia in rats treated with human induced pluripotent stem cell-derived neural precursors confirm the beneficial effect of transplanted cells. Front. Neurol. 2019;10:1074. doi: 10.3389/fneur.2019.01074. PubMed DOI PMC
Suzuki M., McHugh J., Tork C., Shelley B., Klein S.M., Aebischer P., Svendsen C.N. Gdnf secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial als. PLoS ONE. 2007;2:e689. doi: 10.1371/journal.pone.0000689. PubMed DOI PMC
Lunn J.S., Sakowski S.A., McGinley L.M., Pacut C., Hazel T.G., Johe K., Feldman E.L. Autocrine production of igf-i increases stem cell-mediated neuroprotection. Stem Cells. 2015;33:1480–1489. doi: 10.1002/stem.1933. PubMed DOI
Ciucci F., Putignano E., Baroncelli L., Landi S., Berardi N., Maffei L. Insulin-like growth factor 1 (igf-1) mediates the effects of enriched environment (ee) on visual cortical development. PLoS ONE. 2007;2:e475. doi: 10.1371/journal.pone.0000475. PubMed DOI PMC
Kostic V., Jackson-Lewis V., de Bilbao F., Dubois-Dauphin M., Przedborski S. Bcl-2: Prolonging life in a transgenic mouse model of familial amyotrophic lateral sclerosis. Science. 1997;277:559–562. doi: 10.1126/science.277.5325.559. PubMed DOI
Van Loo G., Saelens X., van Gurp M., MacFarlane M., Martin S.J., Vandenabeele P. The role of mitochondrial factors in apoptosis: A russian roulette with more than one bullet. Cell Death Differ. 2002;9:1031–1042. doi: 10.1038/sj.cdd.4401088. PubMed DOI
Boston-Howes W., Gibb S.L., Williams E.O., Pasinelli P., Brown R.H., Jr., Trotti D. Caspase-3 cleaves and inactivates the glutamate transporter eaat2. J. Biol. Chem. 2006;281:14076–14084. doi: 10.1074/jbc.M600653200. PubMed DOI
Fawcett J.W. The extracellular matrix in plasticity and regeneration after cns injury and neurodegenerative disease. Prog. Brain Res. 2015;218:213–226. PubMed
Rowlands D., Sugahara K., Kwok J.C. Glycosaminoglycans and glycomimetics in the central nervous system. Molecules. 2015;20:3527–3548. doi: 10.3390/molecules20033527. PubMed DOI PMC
Mizuno H., Warita H., Aoki M., Itoyama Y. Accumulation of chondroitin sulfate proteoglycans in the microenvironment of spinal motor neurons in amyotrophic lateral sclerosis transgenic rats. J. Neurosci. Res. 2008;86:2512–2523. doi: 10.1002/jnr.21702. PubMed DOI
Lemarchant S., Pomeshchik Y., Kidin I., Karkkainen V., Valonen P., Lehtonen S., Goldsteins G., Malm T., Kanninen K., Koistinaho J. Adamts-4 promotes neurodegeneration in a mouse model of amyotrophic lateral sclerosis. Mol. Neurodegener. 2016;11:10. doi: 10.1186/s13024-016-0078-3. PubMed DOI PMC
Bradbury E.J., Moon L.D., Popat R.J., King V.R., Bennett G.S., Patel P.N., Fawcett J.W., McMahon S.B. Chondroitinase abc promotes functional recovery after spinal cord injury. Nature. 2002;416:636–640. doi: 10.1038/416636a. PubMed DOI
Pizzorusso T., Medini P., Berardi N., Chierzi S., Fawcett J.W., Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298:1248–1251. doi: 10.1126/science.1072699. PubMed DOI
Carulli D., Pizzorusso T., Kwok J.C., Putignano E., Poli A., Forostyak S., Andrews M.R., Deepa S.S., Glant T.T., Fawcett J.W. Animals lacking link protein have attenuated perineuronal nets and persistent plasticity. Brain A J. Neurol. 2010;133:2331–2347. doi: 10.1093/brain/awq145. PubMed DOI
Van Velthoven C.T., Kavelaars A., van Bel F., Heijnen C.J. Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain. Brain Behav. Immun. 2011;25:1342–1348. doi: 10.1016/j.bbi.2011.03.021. PubMed DOI
Barkho B.Z., Munoz A.E., Li X., Li L., Cunningham L.A., Zhao X. Endogenous matrix metalloproteinase (mmp)-3 and mmp-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells. 2008;26:3139–3149. doi: 10.1634/stemcells.2008-0519. PubMed DOI PMC
Beurdeley M., Spatazza J., Lee H.H., Sugiyama S., Bernard C., Di Nardo A.A., Hensch T.K., Prochiantz A. Otx2 binding to perineuronal nets persistently regulates plasticity in the mature visual cortex. J. Neurosci. Off. J. Soc. Neurosci. 2012;32:9429–9437. doi: 10.1523/JNEUROSCI.0394-12.2012. PubMed DOI PMC
Yu J., Vodyanik M.A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J.L., Tian S., Nie J., Jonsdottir G.A., Ruotti V., Stewart R., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920. doi: 10.1126/science.1151526. PubMed DOI
Basso D.M., Beattie M.S., Bresnahan J.C. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 1995;12:1–21. doi: 10.1089/neu.1995.12.1. PubMed DOI
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The miqe guidelines: Minimum information for publication of quantitative real-time pcr experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Kaplan A., Spiller K.J., Towne C., Kanning K.C., Choe G.T., Geber A., Akay T., Aebischer P., Henderson C.E. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration. Neuron. 2014;81:333–348. doi: 10.1016/j.neuron.2013.12.009. PubMed DOI PMC
Israelson A., Ditsworth D., Sun S., Song S., Liang J., Hruska-Plochan M., McAlonis-Downes M., Abu-Hamad S., Zoltsman G., Shani T., et al. Macrophage migration inhibitory factor as a chaperone inhibiting accumulation of misfolded sod1. Neuron. 2015;86:218–232. doi: 10.1016/j.neuron.2015.02.034. PubMed DOI PMC
Bai F., Asojo O.A., Cirillo P., Ciustea M., Ledizet M., Aristoff P.A., Leng L., Koski R.A., Powell T.J., Bucala R., et al. A novel allosteric inhibitor of macrophage migration inhibitory factor (mif) J. Biol. Chem. 2012;287:30653–30663. doi: 10.1074/jbc.M112.385583. PubMed DOI PMC
ALS-like pathology diminishes swelling of spinal astrocytes in the SOD1 animal model
Aryl Hydrocarbon Receptor (AhR)-Mediated Signaling in iPSC-Derived Human Motor Neurons