• This record comes from PubMed

Non-Invasive Human Embryo Metabolic Assessment as a Developmental Criterion

. 2020 Dec 18 ; 9 (12) : . [epub] 20201218

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
TG03010052 TACR (Commercialization at the Tomas Bata University in Zlin).

The selection of a highly-viable single embryo in assisted reproductive technology requires an acceptable predictive method in order to reduce the multiple pregnancy rate and increase the success rate. In this study, the metabolomic profiling of growing and impaired embryos was assessed on the fifth day of fertilization using capillary electrophoresis in order to find a relationship between the profiling and embryo development, and then to provide a mechanistic insight into the appearance/depletion of the metabolites. This unique qualitative technique exhibited the appearance of most non-essential amino acids and lactate, and depleting the serine, alanyl-glutamine and pyruvate in such a manner that the embryos impaired in their development secreted a considerably higher level of lactate and consumed a significantly higher amount of alanyl-glutamine. The different significant ratios of metabolomic depletion/appearance between the embryos confirm their potential for the improvement of the prospective selection of the developed single embryos, and also suggest the fact that pyruvate and alanyl-glutamine are the most critical ATP suppliers on the fifth day of blastocyst development.

See more in PubMed

Shufaro Y., Laufer N. Epigenetic concerns in assisted reproduction: Update and critical review of the current literature. Fertil. Steril. 2013;99:605–606. doi: 10.1016/j.fertnstert.2013.01.126. PubMed DOI

Novakovic B., Lewis S., Halliday J., Kennedy J., Burgner D.P., Czajko A., Kim B., Sexton-Oates A., Juonala M., Hammarberg K. Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nat. Commun. 2019;10:1–12. doi: 10.1038/s41467-019-11929-9. PubMed DOI PMC

Lane M., Mitchell M., Cashman K.S., Feil D., Wakefield S., Zander-Fox D.L. To QC or not to QC: The key to a consistent laboratory? Reprod. Fertil. Dev. 2007;20:23–32. doi: 10.1071/RD07161. PubMed DOI

Brison D., Houghton F., Falconer D., Roberts S., Hawkhead J., Humpherson P., Lieberman B., Leese H. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 2004;19:2319–2324. doi: 10.1093/humrep/deh409. PubMed DOI

Houghton1 F.D., Hawkhead J.A., Humpherson P.G., Hogg J.E., Balen A.H., Rutherford A.J., Leese H.J. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 2002;17:999–1005. doi: 10.1093/humrep/17.4.999. PubMed DOI

Mádr A., Celá A., Klejdus B., Pelcová M., Crha I., Žáková J., Glatz Z. Determination of pyruvate and lactate as potential biomarkers of embryo viability in assisted reproduction by capillary electrophoresis with contactless conductivity detection. Electrophoresis. 2015;36:1244–1250. doi: 10.1002/elps.201400487. PubMed DOI

Uyar A., Seli E. Metabolomic Assessment of Embryo Viability. Semin. Reprod. Med. 2014;32:141–152. doi: 10.1055/s-0033-1363556. PubMed DOI PMC

Sturmey R.G., Brison D.R., Leese H.J. Assessing embryo viability by measurement of amino acid turnover. Reprod. Biomed. Online. 2008;17:486–496. doi: 10.1016/S1472-6483(10)60234-9. PubMed DOI

Drábková P., Andrlová L., Hampl R., Kanďár R. Amino acid metabolism in human embryos. Physiol. Res. 2016;65:5. doi: 10.33549/physiolres.933240. PubMed DOI

Hemmings K., Maruthini D., Vyjayanthi S., Hogg J., Balen A., Campbell B., Leese H., Picton H. Amino acid turnover by human oocytes is influenced by gamete developmental competence, patient characteristics and gonadotrophin treatment. Hum. Reprod. 2013;28:1031–1044. doi: 10.1093/humrep/des458. PubMed DOI PMC

Celá A., Mádr A., Ješeta M., Žáková J., Crha I., Glatz Z. Study of metabolic activity of human embryos focused on amino acids by capillary electrophoresis with light-emitting diode-induced fluorescence detection. Electrophoresis. 2018;39:3040–3048. doi: 10.1002/elps.201800265. PubMed DOI

Gardner D.K., Lane M., Stevens J., Schoolcraft W.B. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil. Steril. 2001;76:1175–1180. doi: 10.1016/S0015-0282(01)02888-6. PubMed DOI

Vergouw C., Botros L., Roos P., Lens J., Schats R., Hompes P., Burns D., Lambalk C. Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: A novel, non-invasive method for embryo selection. Hum. Reprod. 2008;23:1499–1504. doi: 10.1093/humrep/den111. PubMed DOI

Scott R., Seli E., Miller K., Sakkas D., Scott K., Burns D.H. Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: A prospective blinded pilot study. Fertil. Steril. 2008;90:77–83. doi: 10.1016/j.fertnstert.2007.11.058. PubMed DOI

Marhuenda-Egea F.C., Gonsálvez-Alvarez R., Martínez-Sabater E., Lledó B., Ten J., Bernabeu R. Improving human embryos selection in IVF: Non-invasive metabolomic and chemometric approach. Metabolomics. 2011;7:247–256. doi: 10.1007/s11306-010-0245-4. DOI

Seli E., Botros L., Sakkas D., Burns D.H. Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil. Steril. 2008;90:2183–2189. doi: 10.1016/j.fertnstert.2008.07.1739. PubMed DOI

Križman M., Virant-Klun I., Prošek M. Determination of derivatized amino acids in human embryo culture media by gas chromatography. J. Chromatogr. B. 2007;858:292–295. doi: 10.1016/j.jchromb.2007.08.006. PubMed DOI

Zhang Y.L., Zhang G.M., Jia R.X., Wan Y.J., Yang H., Sun L.W., Han L., Wang F. Non-invasive assessment of culture media from goat cloned embryos associated with subjective morphology by gas chromatography–mass spectroscopy-based metabolomic analysis. Anim. Sci. J. 2018;89:31–41. doi: 10.1111/asj.12885. PubMed DOI

Tůma P., Sommerová B., Šiklová M. Monitoring of adipose tissue metabolism using microdialysis and capillary electrophoresis with contactless conductivity detection. Talanta. 2019;192:380–386. doi: 10.1016/j.talanta.2018.09.076. PubMed DOI

Razali N.M., Wah Y.B. Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. J. Stat. Modeling Anal. 2011;2:21–33.

Morbeck D.E., Krisher R.L., Herrick J.R., Baumann N.A., Matern D., Moyer T. Composition of commercial media used for human embryo culture. Fertil. Steril. 2014;102:759–766.e9. doi: 10.1016/j.fertnstert.2014.05.043. PubMed DOI

Gardner D.K., Lane M. Culture and selection of viable blastocysts: A feasible proposition for human IVF? Hum. Reprod. Update. 1997;3:367–382. doi: 10.1093/humupd/3.4.367. PubMed DOI

Devreker F., van den Bergh M., Biramane J., Winston R.L., Englert Y., Hardy K. Effects of taurine on human embryo development in vitro. Hum. Reprod. 1999;14:2350–2356. doi: 10.1093/humrep/14.9.2350. PubMed DOI

Consensus G.C. There is only one thing that is truly important in an IVF laboratory: Everything Cairo Consensus Guidelines on IVF Culture Conditions. Reprod. Biomed. Online. 2019;40:33–60. doi: 10.1016/j.rbmo.2019.10.003. PubMed DOI

Kleijkers S.H., van Montfoort A.P., Bekers O., Coonen E., Derhaag J.G., Evers J.L., Dumoulin J.C. Ammonium accumulation in commercially available embryo culture media and protein supplements during storage at 2–8 C and during incubation at 37 °C. Hum. Reprod. 2016;31:1192–1199. doi: 10.1093/humrep/dew059. PubMed DOI

Moravek M., Fisseha S., Swain J.E. Dipeptide forms of glycine support mouse preimplantation embryo development in vitro and provide protection against high media osmolality. J. Assist. Reprod. Genet. 2012;29:283–290. doi: 10.1007/s10815-011-9705-7. PubMed DOI PMC

Morris M.B., Ozsoy S., Zada M., Zada M., Zamfirescu R., Todorova M.G., Day M.L. Selected amino acids promote mouse preimplantation embryo development in a growth factor-like manner. Front. Physiol. 2020;11:140. doi: 10.3389/fphys.2020.00140. PubMed DOI PMC

Heeneman S., Deutz N., Buurman W. The concentrations of glutamine and ammonia in commercially available cell culture media. J. Immunol. Methods. 1993;166:85–91. doi: 10.1016/0022-1759(93)90331-Z. PubMed DOI

Nishizono H., Darwish M., Endo T.A., Uno K., Abe H., Yasuda R. Glycine receptor α4 subunit facilitates the early embryonic development in mice. Reproduction. 2019;159:41. doi: 10.1530/REP-19-0312. PubMed DOI

Herrick J.R., Lyons S.M., Greene A.F., Broeckling C.D., Schoolcraft W.B., Krisher R.L. Direct and osmolarity-dependent effects of glycine on preimplantation bovine embryos. PLoS ONE. 2016;11:e0159581. doi: 10.1371/journal.pone.0159581. PubMed DOI PMC

Redel B.K., Spate L.D., Lee K., Mao J., Whitworth K.M., Prather R.S. Glycine supplementation in vitro enhances porcine preimplantation embryo cell number and decreases apoptosis but does not lead to live births. Mol. Reprod. Dev. 2016;83:246–258. PubMed PMC

Alves A., Bassot A., Bulteau A.-L., Pirola L., Morio B. Glycine Metabolism and Its Alterations in Obesity and Metabolic Diseases. Nutrients. 2019;11:1356. doi: 10.3390/nu11061356. PubMed DOI PMC

Mitchell M., Cashman K.S., Gardner D.K., Thompson J.G., Lane M. Disruption of mitochondrial malate-aspartate shuttle activity in mouse blastocysts impairs viability and fetal growth. Biol. Reprod. 2009;80:295–301. doi: 10.1095/biolreprod.108.069864. PubMed DOI PMC

Conaghan J., Hardy K., Handyside A.H., Winston R.M., Leese H.J. Selection criteria for human embryo transfer: A comparison of pyruvate uptake and morphology. J. Assist. Reprod. Genet. 1993;10:21–30. doi: 10.1007/BF01204436. PubMed DOI

Kakuda D.K., MacLeod C.L. Na (+)-independent transport (uniport) of amino acids and glucose in mammalian cells. J. Exp. Biol. 1994;196:93–108. PubMed

Bröer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 2008 doi: 10.1152/physrev.00018.2006. PubMed DOI

Jansen S., Esmaeilpour T., Pantaleon M., Kaye P.L. Glucose affects monocarboxylate cotransporter (MCT) 1 expression during mouse preimplantation development. Reproduction. 2006;131:469–479. doi: 10.1530/rep.1.00953. PubMed DOI

Lane M., Gardner D.K. Lactate Regulates Pyruvate Uptake and Metabolism in the PreimplantationMouse Embryo. Biol. Reprod. 2000;62:16–22. doi: 10.1095/biolreprod62.1.16. PubMed DOI

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...