Unique Members of the Adipokinetic Hormone Family in Butterflies and Moths (Insecta, Lepidoptera)

. 2020 ; 11 () : 614552. [epub] 20201217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33391031

Lepidoptera is amongst one of the four most speciose insect orders and ecologically very successful because of their ability to fly. Insect flight is always aerobic and exacts a high metabolic demand on the animal. A family of structurally related neuropeptides, generically referred to as adipokinetic hormones (AKHs), play a key role in triggering the release of readily utilizable fuel metabolites into the hemolymph from the storage forms in the fat body. We used mass spectrometry to elucidate AKH sequences from 34 species of Lepidoptera and searched the literature and publicly available databases to compile (in a phylogenetic context) a comprehensive list of all Lepidoptera sequences published/predicted from a total of 76 species. We then used the resulting set of 15 biochemically characterized AKHs in a physiological assay that measures lipid or carbohydrate mobilization in three different lepidopteran species to learn about the functional cross-activity (receptor-ligand interactions) amongst the different butterfly/moth families. Our results include novel peptide structures, demonstrate structural diversity, phylogenetic trends in peptide distribution and order-specificity of Lepidoptera AKHs. There is almost an equal occurrence of octa-, nona-, and decapeptides, with an unparalleled emphasis on nonapeptides than in any insect order. Primitive species make Peram-CAH-II, an octapeptide found also in other orders; the lepidopteran signature peptide is Manse-AKH. Not all of the 15 tested AKHs are active in Pieris brassicae; this provides insight into structure-activity specificity and could be useful for further investigations into possible biorational insecticide development.

Zobrazit více v PubMed

Abdel-Latief M., Hoffmann K. H. (2007). The adipokinetic hormones in the fall armyworm, PubMed DOI

Abdulganiyyu I. A., Kaczmarek K., Zabrocki J., Nachman R. J., Marchal E., Schellens S., et al. (2020a). Conformational analysis of a cyclic AKH neuropeptide analog that elicits selective activity on locust versus honeybee receptor. PubMed DOI

Abdulganiyyu I. A., Sani M.-A., Separovic F., Marco H., Jackson G. E. (2020b). Phote-HrTH ( DOI

Agrawal A. (2017).

Aker C. L., Udovic D. (1981). Oviposition and pollination behavior of the Yucca moth, PubMed DOI

Altstein M., Nässel D. R. (2010). “Neuropeptide signalling in insects,” in PubMed

Anneke D. P., Moran V. C. (1978). Critical reviews on biological pest control in South Africa. 2. The prickly pear,

Audsley N., Down R. E. (2015). G protein coupled receptors as targets for next generation pesticides. PubMed DOI

Basuk M., Behera J. (2018). A review on woollen cloth’s moth and its remedies.

Baudron F., Zaman-Allah M. A., Chaipa I., Chari N., Chinwada P. (2019). Understanding the factors influencing fall armyworm ( DOI

Beenakkers A. M. T. (1969). Carbohydrate and fat as a fuel for insect flight. A comparative study. PubMed DOI

Bradfield J. Y., Keeley L. L. (1989). Adipokinetic hormone gene sequence from PubMed

Brantjes N. B. M. (1976). Riddles around the pollination of

Brattström O., Bensch S., Wassenaar L. I., Hobson K. A., Åkesson S. (2010). Understanding the migration ecology of European red admirals DOI

Caers J., Peeters L., Janssen T., De Haes W., Gäde G., Schoofs L. (2012). Structure-activity studies of PubMed DOI

Challis R. J., Kumar S., Dasmahapatra K. K., Jiggins C. D., Blaxter M. (2016). Lepbase: the Lepidopteran genome database. DOI

Chapman J. W., Reynolds D. R., Wilson K. (2015). Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. PubMed DOI

Corzo F. L., Traverso L., Sterkel M., Benavente A., Ajmat M. T., Ons S. (2020). PubMed DOI

Crabtree B., Newsholme E. A. (1972). The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenase in muscles from vertebrates and invertebrates. PubMed DOI PMC

Cunningham J. P., Zalucki M. P. (2014). Understanding heliothine (Lepidoptera: Heliothinae) pests: what is a host plant? PubMed DOI

Diesner M., Gallot A., Binz H., Gaertner C., Vitecek S., Kahnt J., et al. (2018). Mating-induced differential peptidomics of neuropeptides and protein hormones in PubMed

Donato J. L., Moreno R. A., Hyslop S., Duarte A., Antunes E., Le Bonniec B. F., et al. (1998). PubMed DOI

Fónagy A., Marco H. G., König S., Gäde G. (2008). Biological activity and identification of neuropeptides in the neurosecretory complexes of the cabbage pest insect, PubMed DOI

Gäde G. (1989). The hypertrehalosaemic peptides of cockroaches: a phylogenetic study. PubMed DOI

Gäde G. (1992). The hormonal integration of insect flight metabolism.

Gäde G. (1997). “The explosion of structural information on insect neuropeptides,” in PubMed DOI

Gäde G. (2009). “Peptides of the adipokinetic hormone/red pigment-concentrating hormone family - a new take on biodiversity,” in DOI

Gäde G., Auerswald L., Predel R., Marco H. G. (2004). Substrate usage and its regulation during flight and swimming in the backswimmer, DOI

Gäde G., Auerswald L., Šimek P., Marco H. G., Kodrík D. (2003). Red pigment-concentrating hormone is not limited to crustaceans. PubMed DOI

Gäde G., Goldsworthy G. J., Kegel G., Keller R. (1984). Single step purification of locust adipokinetic hormones I and II by reversed-phase high-performance liquid chromatography and the amino-acid composition of the hormone II. PubMed DOI

Gäde G., Marco H. G. (2005). The adipokinetic hormones of Odonata: a phylogenetic approach. PubMed DOI

Gäde G., Marco H. G. (2011). The adipokinetic hormone family in Chrysomeloidea: structural and functional considerations. PubMed DOI PMC

Gäde G., Marco H. G. (2017). The adipokinetic hormone of the coleopteran suborder Adephaga: structure, function, and comparison of distribution in other insects. PubMed DOI

Gäde G., Marco H. G., Šimek P., Audsley N., Clark K. D., Weaver R. J. (2008). Predicted versus expressed adipokinetic hormones, and other small peptides from the corpus cardiacum-corpus allatum: a case study with beetles and moths. PubMed DOI

Gäde G., Šimek P., Clark K. D., Marco H. G. (2013). Five functional adipokinetic peptides expressed in the corpus cardiacum of the moth genus PubMed DOI

Gäde G., Šimek P., Marco H. G. (2011). An invertebrate [hydroxyproline]-modified neuropeptide: further evidence for a close evolutionary relationship between insect adipokinetic hormone and mammalian gonadotropin hormone family. PubMed DOI

Gäde G., Šimek P., Marco H. G. (2016). Novel members of the adipokinetic hormone family in beetles of the superfamily PubMed DOI

Gäde G., Šimek P., Marco H. G. (2019). Structural diversity of adipokinetic hormones in the hyperdiverse coleopteran PubMed DOI

Gäde G., Šimek P., Marco H. G. (2020). The adipokinetic peptides in Diptera: structure, function, and evolutionary trends. PubMed DOI PMC

Garczynski S. F., Hendrickson C. A., Harper A., Unruh T. R., Dhingra A., Ahn S.-J., et al. (2019). Neuropeptides and peptide hormones identified in codling moth, PubMed DOI

Grimaldi D. A., Engel M. S. (2005).

Guo J. L., Li X. K., Shen X. J., Wang M. L., Wu K. M. (2020). Flight performance of PubMed PMC

Haag C. R., Saastamoinen M., Marden J. H., Hanski I. (2005). A candidate locus for variation in dispersal rate in a butterfly metapopulation. PubMed DOI PMC

Hansen K. K., Stafflinger E., Schneider M., Hauser F., Cazzamali G., Williamson M., et al. (2010). Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. PubMed DOI PMC

Holwerda D. A., van Doorn J., Beenakkers A. M. T. (1977). Characterization of the adipokinetic and hyperglycaemic substances from the locust corpus cardiacum. DOI

Ishibashi J., Kataoka H., Nagasawa H., Isogai A. (1992). Isolation and identification of adipokinetic hormone of the silkworm, DOI

Jackson G. E., Pavadai E., Gäde G., Andersen N. H. (2019). The adipokinetic hormones and their cognate receptor from the desert locust, PubMed DOI PMC

Jackson G. E., Pavadai E., Gäde G., Timol Z., Andersen N. H. (2018). Interaction of the red pigment-concentrating hormone of the crustacean PubMed DOI

Jaffe H., Raina A. K., Riley C. T., Fraser B. A., Bird T. G., Tseng C. M., et al. (1988). Isolation and primary structure of a neuropeptide hormone from PubMed DOI

Jaffe H., Raina A. K., Riley C. T., Fraser B. A., Holman G. M., Wagner R. M., et al. (1986). Isolation and primary structure of a peptide from the corpora cardiaca of PubMed DOI

Jiang X. F., Luo L. Z., Zhang L., Sappington T. W., Hu Y. (2011). Regulation of migration in PubMed DOI

Joos B. (1987). Carbohydrate use in the flight muscles of

Kammer A. E., Heinrich B. (1978). Insect flight metabolism. DOI

Kawahara A. Y., Plotkin D., Espeland M., Meusemann K., Toussaint E. F. E., Donath A., et al. (2019). Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. PubMed DOI PMC

Khadioli N., Tonnang Z. E. H., Muchugu E., Ong’amo G., Achia T., Kipchirchir I., et al. (2014). Effect of temperature on the phenology of PubMed DOI

Kodrík D., Marco H. G., Šimek P., Socha R., Štys P., Gäde G. (2010). The adipokinetic hormones of Heteroptera: a comparative study. DOI

Köllisch G. V., Lorenz M. W., Kellner R., Verhaert P. D., Hoffmann K. H. (2000). Structure elucidation and biological activity of an unusual adipokinetic hormone from corpora cardiaca of the butterfly, PubMed DOI

Köllisch G. V., Verhaert P. D., Hoffmann K. H. (2003). PubMed DOI

Kono N., Nakamura H., Ohtoshi R., Tomita M., Numata K., Arakawa K. (2019). The bagworm genome reveals a unique fibroin gene that provides high tensile strength. PubMed DOI PMC

Kristensen N. P., Scoble M. J., Karsholt O. (2007). Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. DOI

Li F., Zhao X., Zhu S., Wang T., Li T., Tracy Woolfley T., et al. (2020). Identification and expression profiling of neuropeptides and neuropeptide receptor genes in PubMed DOI

Liebrich W., Gäde G. (1995). Adipokinetic neuropeptides and flight metabolism in three moth species of the families Sphingidae, Saturnidae and Bombycidae. DOI

Llopis-Giménez A., Han Y., Kim Y., Ros V. I. D., Herrero S. (2019). Identification and expression analysis of the PubMed DOI

Marco H. G., Gäde G. (2015). Structure-activity relationship of adipokinetic hormone analogs in the striped hawk moth, PubMed DOI

Marco H. G., Gäde G. (2017). Structure and function of adipokinetic hormones of the large white butterfly DOI

Marco H. G., Gäde G. (2019). Five neuropeptide ligands meet one receptor: how does this tally? A structure-activity relationship study using adipokinetic bioassays with the sphingid moth, PubMed DOI PMC

Marco H. G., Gäde G. (2020). “Adipokinetic hormone: a hormone for all seasons?,” in

Marco H. G., Šimek P., Clark K. D., Gäde G. (2013). Novel adipokinetic hormones in the kissing bugs PubMed DOI

Marzano M., Ambrose-Oji B., Hall C., Moseley D. (2020). Pests in the city: managing public health risks and social values in response to oak processionary moth ( DOI

Mitter C., Davis D. R., Cummings M. P. (2017). Phylogeny and evolution of Lepidoptera. PubMed DOI

Mugumbate G., Jackson G. E., van der Spoel D., Kövér K. E., Szilágyi L. (2013). PubMed DOI

Nayar J. K., van Handel E. (1971). Flight performance and metabolism of the moth PubMed DOI

O’Brien D. M. (1999). Fuel use in flight and its dependence on nectar feeding in the hawkmoth PubMed

Oda Y., Uejuma M., Iwami M., Sakurai S. (2000). Involvement of adipokinetic hormone in the homeostatic control of hemolymph trehalose concentration in the larvae of PubMed DOI

Ovaskainen O., Smith A. D., Osborne J. L., Reynolds D. R., Carreck N. L., Martin A. P., et al. (2008). Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. PubMed DOI PMC

Predel R., Wegener C., Russel W. K., Tichy S. E., Russel D. H., Nachman R. J. (2004). Peptidomics of CNS-associated neurohemal systems of adult PubMed DOI

Rader R., Bartomeus I., Garibaldi L. A., Garratt M. P. D., Howlett B. G., Winfree R., et al. (2016). Non-bee insects are important contributors to global crop pollination. PubMed PMC

Regier J. C., Mitter C., Zwick A., Bazinet A. L., Cummings M. P., Kawahara A. Y., et al. (2013). A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PubMed DOI PMC

Reinhardt R., Harz K. (1989).

Roch G. J., Busby E. R., Sherwood N. M. (2011). Evolution of GnRH: diving deeper. PubMed DOI

Roller L., Yamanaka N., Watanabe K., Daubnerova I., Zitnan D., Kataoka H., et al. (2008). The unique evolution of neuropeptide genes in the silkworm PubMed DOI

Schumacher P., Weyeneth A., Weber D. C., Dorn S. (1997). Long flights in DOI

Sekonya J. G., McClure N. J., Wynberg R. P. (2020). New pressures, old foodways: governance and access to edible mopane caterpillars, DOI

Spik G., Montreuil J. (1964). Deux causes d’erreur dans les dosages colorimetriques des oses neutres totaux. PubMed

Stefanescu C., Páramo F., Åkesson S., Alarcón M., Ávila A., Brereton T., et al. (2013). Multi-generational long-distance migration of insects: studying the painted lady butterfly in the Western Palaearctic. DOI

Stokstad E. (2017). New crop pest takes Africa at lightning speed. PubMed DOI

Teshome A., Raina S. K., Vollrath F. (2014). Structure and properties of silk from the African wild silkmoth PubMed PMC

Triant D. A., Cinel S. D., Kawahara A. Y. (2018). Lepidoptera genomes: current knowledge, gaps and future directions. PubMed DOI

van Handel E., Nayar J. K. (1972). Turn-over of diglycerides during flight and rest in the moth PubMed DOI

van Nieukerken E. J., Kaila L., Kitching I. J., Kristensen N. P., Lees D. C., Minet J., et al. (2011). Order Lepidoptera, Linnaeus, 1758.

Veerman A., Van Zon J. C. J. (1965). Insect pollination of pansies ( DOI

Verlinden H., Vleugels R., Zels S., Dillen S., Lenaerts C., Crabbé K., et al. (2014). Receptors for neuronal or endocrine signalling molecules as potential targets for the control of insect pests. DOI

Wang Q., Zhang Z., Tang G. (2016). The mitochondrial genome of PubMed DOI

Weaver R. J., Marco H. G., Šimek P., Audsley N., Clark K. D., Gäde G. (2012). Adipokinetic hormones (AKHs) of sphingid Lepidoptera, including the identification of a second PubMed DOI

Xu G., Gu G.-X., Teng Z.-W., Wu S.-F., Huang J., Song Q.-S., et al. (2016). Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer PubMed PMC

Zebe E. (1954). Über den Stoffwechsel der Lepidopteren. DOI

Zhang Q., Nachman R. J., Kaczmarek K., Zabrocki J., Denlinger D. L. (2011). Disruption of insect diapause using agonists and an antagonist of diapause hormone. PubMed DOI PMC

Zheng X. L., Cong X. P., Wang X. P., Lei C. L. (2011). A review of geographic distribution, overwintering and migration in

Ziegler R., Eckart K., Law J. H. (1990). Adipokinetic hormone controls lipid metabolism in adults and carbohydrate metabolism in larvae of PubMed DOI

Ziegler R., Eckart K., Schwarz H., Keller R. (1985). Amino acid sequence of PubMed DOI

Ziegler R., Gäde G. (1984). Preliminary characterization of glycogen phosphorylase activating hormone and adipokinetic hormone from DOI

Ziegler R., Schulz M. (1986a). Regulation of carbohydrate metabolism during flight in DOI

Ziegler R., Schulz M. (1986b). Regulation of lipid metabolism during flight in DOI

Zöllner N., Kirsch K. (1962). Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen sulfophosphovanillin Reaktion. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...