Unique Members of the Adipokinetic Hormone Family in Butterflies and Moths (Insecta, Lepidoptera)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33391031
PubMed Central
PMC7773649
DOI
10.3389/fphys.2020.614552
Knihovny.cz E-zdroje
- Klíčová slova
- Lepidoptera, adipokinetic hormone, biological assays, butterflies and moths, mass spectrometry, neuropeptides, primary structure,
- Publikační typ
- časopisecké články MeSH
Lepidoptera is amongst one of the four most speciose insect orders and ecologically very successful because of their ability to fly. Insect flight is always aerobic and exacts a high metabolic demand on the animal. A family of structurally related neuropeptides, generically referred to as adipokinetic hormones (AKHs), play a key role in triggering the release of readily utilizable fuel metabolites into the hemolymph from the storage forms in the fat body. We used mass spectrometry to elucidate AKH sequences from 34 species of Lepidoptera and searched the literature and publicly available databases to compile (in a phylogenetic context) a comprehensive list of all Lepidoptera sequences published/predicted from a total of 76 species. We then used the resulting set of 15 biochemically characterized AKHs in a physiological assay that measures lipid or carbohydrate mobilization in three different lepidopteran species to learn about the functional cross-activity (receptor-ligand interactions) amongst the different butterfly/moth families. Our results include novel peptide structures, demonstrate structural diversity, phylogenetic trends in peptide distribution and order-specificity of Lepidoptera AKHs. There is almost an equal occurrence of octa-, nona-, and decapeptides, with an unparalleled emphasis on nonapeptides than in any insect order. Primitive species make Peram-CAH-II, an octapeptide found also in other orders; the lepidopteran signature peptide is Manse-AKH. Not all of the 15 tested AKHs are active in Pieris brassicae; this provides insight into structure-activity specificity and could be useful for further investigations into possible biorational insecticide development.
Biology Centre Czech Academy of Sciences České Budějovice Czechia
Department of Biological Sciences University of Cape Town Rondebosch South Africa
Zobrazit více v PubMed
Abdel-Latief M., Hoffmann K. H. (2007). The adipokinetic hormones in the fall armyworm, PubMed DOI
Abdulganiyyu I. A., Kaczmarek K., Zabrocki J., Nachman R. J., Marchal E., Schellens S., et al. (2020a). Conformational analysis of a cyclic AKH neuropeptide analog that elicits selective activity on locust versus honeybee receptor. PubMed DOI
Abdulganiyyu I. A., Sani M.-A., Separovic F., Marco H., Jackson G. E. (2020b). Phote-HrTH ( DOI
Agrawal A. (2017).
Aker C. L., Udovic D. (1981). Oviposition and pollination behavior of the Yucca moth, PubMed DOI
Altstein M., Nässel D. R. (2010). “Neuropeptide signalling in insects,” in PubMed
Anneke D. P., Moran V. C. (1978). Critical reviews on biological pest control in South Africa. 2. The prickly pear,
Audsley N., Down R. E. (2015). G protein coupled receptors as targets for next generation pesticides. PubMed DOI
Basuk M., Behera J. (2018). A review on woollen cloth’s moth and its remedies.
Baudron F., Zaman-Allah M. A., Chaipa I., Chari N., Chinwada P. (2019). Understanding the factors influencing fall armyworm ( DOI
Beenakkers A. M. T. (1969). Carbohydrate and fat as a fuel for insect flight. A comparative study. PubMed DOI
Bradfield J. Y., Keeley L. L. (1989). Adipokinetic hormone gene sequence from PubMed
Brantjes N. B. M. (1976). Riddles around the pollination of
Brattström O., Bensch S., Wassenaar L. I., Hobson K. A., Åkesson S. (2010). Understanding the migration ecology of European red admirals DOI
Caers J., Peeters L., Janssen T., De Haes W., Gäde G., Schoofs L. (2012). Structure-activity studies of PubMed DOI
Challis R. J., Kumar S., Dasmahapatra K. K., Jiggins C. D., Blaxter M. (2016). Lepbase: the Lepidopteran genome database. DOI
Chapman J. W., Reynolds D. R., Wilson K. (2015). Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. PubMed DOI
Corzo F. L., Traverso L., Sterkel M., Benavente A., Ajmat M. T., Ons S. (2020). PubMed DOI
Crabtree B., Newsholme E. A. (1972). The activities of phosphorylase, hexokinase, phosphofructokinase, lactate dehydrogenase and the glycerol 3-phosphate dehydrogenase in muscles from vertebrates and invertebrates. PubMed DOI PMC
Cunningham J. P., Zalucki M. P. (2014). Understanding heliothine (Lepidoptera: Heliothinae) pests: what is a host plant? PubMed DOI
Diesner M., Gallot A., Binz H., Gaertner C., Vitecek S., Kahnt J., et al. (2018). Mating-induced differential peptidomics of neuropeptides and protein hormones in PubMed
Donato J. L., Moreno R. A., Hyslop S., Duarte A., Antunes E., Le Bonniec B. F., et al. (1998). PubMed DOI
Fónagy A., Marco H. G., König S., Gäde G. (2008). Biological activity and identification of neuropeptides in the neurosecretory complexes of the cabbage pest insect, PubMed DOI
Gäde G. (1989). The hypertrehalosaemic peptides of cockroaches: a phylogenetic study. PubMed DOI
Gäde G. (1992). The hormonal integration of insect flight metabolism.
Gäde G. (1997). “The explosion of structural information on insect neuropeptides,” in PubMed DOI
Gäde G. (2009). “Peptides of the adipokinetic hormone/red pigment-concentrating hormone family - a new take on biodiversity,” in DOI
Gäde G., Auerswald L., Predel R., Marco H. G. (2004). Substrate usage and its regulation during flight and swimming in the backswimmer, DOI
Gäde G., Auerswald L., Šimek P., Marco H. G., Kodrík D. (2003). Red pigment-concentrating hormone is not limited to crustaceans. PubMed DOI
Gäde G., Goldsworthy G. J., Kegel G., Keller R. (1984). Single step purification of locust adipokinetic hormones I and II by reversed-phase high-performance liquid chromatography and the amino-acid composition of the hormone II. PubMed DOI
Gäde G., Marco H. G. (2005). The adipokinetic hormones of Odonata: a phylogenetic approach. PubMed DOI
Gäde G., Marco H. G. (2011). The adipokinetic hormone family in Chrysomeloidea: structural and functional considerations. PubMed DOI PMC
Gäde G., Marco H. G. (2017). The adipokinetic hormone of the coleopteran suborder Adephaga: structure, function, and comparison of distribution in other insects. PubMed DOI
Gäde G., Marco H. G., Šimek P., Audsley N., Clark K. D., Weaver R. J. (2008). Predicted versus expressed adipokinetic hormones, and other small peptides from the corpus cardiacum-corpus allatum: a case study with beetles and moths. PubMed DOI
Gäde G., Šimek P., Clark K. D., Marco H. G. (2013). Five functional adipokinetic peptides expressed in the corpus cardiacum of the moth genus PubMed DOI
Gäde G., Šimek P., Marco H. G. (2011). An invertebrate [hydroxyproline]-modified neuropeptide: further evidence for a close evolutionary relationship between insect adipokinetic hormone and mammalian gonadotropin hormone family. PubMed DOI
Gäde G., Šimek P., Marco H. G. (2016). Novel members of the adipokinetic hormone family in beetles of the superfamily PubMed DOI
Gäde G., Šimek P., Marco H. G. (2019). Structural diversity of adipokinetic hormones in the hyperdiverse coleopteran PubMed DOI
Gäde G., Šimek P., Marco H. G. (2020). The adipokinetic peptides in Diptera: structure, function, and evolutionary trends. PubMed DOI PMC
Garczynski S. F., Hendrickson C. A., Harper A., Unruh T. R., Dhingra A., Ahn S.-J., et al. (2019). Neuropeptides and peptide hormones identified in codling moth, PubMed DOI
Grimaldi D. A., Engel M. S. (2005).
Guo J. L., Li X. K., Shen X. J., Wang M. L., Wu K. M. (2020). Flight performance of PubMed PMC
Haag C. R., Saastamoinen M., Marden J. H., Hanski I. (2005). A candidate locus for variation in dispersal rate in a butterfly metapopulation. PubMed DOI PMC
Hansen K. K., Stafflinger E., Schneider M., Hauser F., Cazzamali G., Williamson M., et al. (2010). Discovery of a novel insect neuropeptide signaling system closely related to the insect adipokinetic hormone and corazonin hormonal systems. PubMed DOI PMC
Holwerda D. A., van Doorn J., Beenakkers A. M. T. (1977). Characterization of the adipokinetic and hyperglycaemic substances from the locust corpus cardiacum. DOI
Ishibashi J., Kataoka H., Nagasawa H., Isogai A. (1992). Isolation and identification of adipokinetic hormone of the silkworm, DOI
Jackson G. E., Pavadai E., Gäde G., Andersen N. H. (2019). The adipokinetic hormones and their cognate receptor from the desert locust, PubMed DOI PMC
Jackson G. E., Pavadai E., Gäde G., Timol Z., Andersen N. H. (2018). Interaction of the red pigment-concentrating hormone of the crustacean PubMed DOI
Jaffe H., Raina A. K., Riley C. T., Fraser B. A., Bird T. G., Tseng C. M., et al. (1988). Isolation and primary structure of a neuropeptide hormone from PubMed DOI
Jaffe H., Raina A. K., Riley C. T., Fraser B. A., Holman G. M., Wagner R. M., et al. (1986). Isolation and primary structure of a peptide from the corpora cardiaca of PubMed DOI
Jiang X. F., Luo L. Z., Zhang L., Sappington T. W., Hu Y. (2011). Regulation of migration in PubMed DOI
Joos B. (1987). Carbohydrate use in the flight muscles of
Kammer A. E., Heinrich B. (1978). Insect flight metabolism. DOI
Kawahara A. Y., Plotkin D., Espeland M., Meusemann K., Toussaint E. F. E., Donath A., et al. (2019). Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. PubMed DOI PMC
Khadioli N., Tonnang Z. E. H., Muchugu E., Ong’amo G., Achia T., Kipchirchir I., et al. (2014). Effect of temperature on the phenology of PubMed DOI
Kodrík D., Marco H. G., Šimek P., Socha R., Štys P., Gäde G. (2010). The adipokinetic hormones of Heteroptera: a comparative study. DOI
Köllisch G. V., Lorenz M. W., Kellner R., Verhaert P. D., Hoffmann K. H. (2000). Structure elucidation and biological activity of an unusual adipokinetic hormone from corpora cardiaca of the butterfly, PubMed DOI
Köllisch G. V., Verhaert P. D., Hoffmann K. H. (2003). PubMed DOI
Kono N., Nakamura H., Ohtoshi R., Tomita M., Numata K., Arakawa K. (2019). The bagworm genome reveals a unique fibroin gene that provides high tensile strength. PubMed DOI PMC
Kristensen N. P., Scoble M. J., Karsholt O. (2007). Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. DOI
Li F., Zhao X., Zhu S., Wang T., Li T., Tracy Woolfley T., et al. (2020). Identification and expression profiling of neuropeptides and neuropeptide receptor genes in PubMed DOI
Liebrich W., Gäde G. (1995). Adipokinetic neuropeptides and flight metabolism in three moth species of the families Sphingidae, Saturnidae and Bombycidae. DOI
Llopis-Giménez A., Han Y., Kim Y., Ros V. I. D., Herrero S. (2019). Identification and expression analysis of the PubMed DOI
Marco H. G., Gäde G. (2015). Structure-activity relationship of adipokinetic hormone analogs in the striped hawk moth, PubMed DOI
Marco H. G., Gäde G. (2017). Structure and function of adipokinetic hormones of the large white butterfly DOI
Marco H. G., Gäde G. (2019). Five neuropeptide ligands meet one receptor: how does this tally? A structure-activity relationship study using adipokinetic bioassays with the sphingid moth, PubMed DOI PMC
Marco H. G., Gäde G. (2020). “Adipokinetic hormone: a hormone for all seasons?,” in
Marco H. G., Šimek P., Clark K. D., Gäde G. (2013). Novel adipokinetic hormones in the kissing bugs PubMed DOI
Marzano M., Ambrose-Oji B., Hall C., Moseley D. (2020). Pests in the city: managing public health risks and social values in response to oak processionary moth ( DOI
Mitter C., Davis D. R., Cummings M. P. (2017). Phylogeny and evolution of Lepidoptera. PubMed DOI
Mugumbate G., Jackson G. E., van der Spoel D., Kövér K. E., Szilágyi L. (2013). PubMed DOI
Nayar J. K., van Handel E. (1971). Flight performance and metabolism of the moth PubMed DOI
O’Brien D. M. (1999). Fuel use in flight and its dependence on nectar feeding in the hawkmoth PubMed
Oda Y., Uejuma M., Iwami M., Sakurai S. (2000). Involvement of adipokinetic hormone in the homeostatic control of hemolymph trehalose concentration in the larvae of PubMed DOI
Ovaskainen O., Smith A. D., Osborne J. L., Reynolds D. R., Carreck N. L., Martin A. P., et al. (2008). Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance. PubMed DOI PMC
Predel R., Wegener C., Russel W. K., Tichy S. E., Russel D. H., Nachman R. J. (2004). Peptidomics of CNS-associated neurohemal systems of adult PubMed DOI
Rader R., Bartomeus I., Garibaldi L. A., Garratt M. P. D., Howlett B. G., Winfree R., et al. (2016). Non-bee insects are important contributors to global crop pollination. PubMed PMC
Regier J. C., Mitter C., Zwick A., Bazinet A. L., Cummings M. P., Kawahara A. Y., et al. (2013). A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PubMed DOI PMC
Reinhardt R., Harz K. (1989).
Roch G. J., Busby E. R., Sherwood N. M. (2011). Evolution of GnRH: diving deeper. PubMed DOI
Roller L., Yamanaka N., Watanabe K., Daubnerova I., Zitnan D., Kataoka H., et al. (2008). The unique evolution of neuropeptide genes in the silkworm PubMed DOI
Schumacher P., Weyeneth A., Weber D. C., Dorn S. (1997). Long flights in DOI
Sekonya J. G., McClure N. J., Wynberg R. P. (2020). New pressures, old foodways: governance and access to edible mopane caterpillars, DOI
Spik G., Montreuil J. (1964). Deux causes d’erreur dans les dosages colorimetriques des oses neutres totaux. PubMed
Stefanescu C., Páramo F., Åkesson S., Alarcón M., Ávila A., Brereton T., et al. (2013). Multi-generational long-distance migration of insects: studying the painted lady butterfly in the Western Palaearctic. DOI
Stokstad E. (2017). New crop pest takes Africa at lightning speed. PubMed DOI
Teshome A., Raina S. K., Vollrath F. (2014). Structure and properties of silk from the African wild silkmoth PubMed PMC
Triant D. A., Cinel S. D., Kawahara A. Y. (2018). Lepidoptera genomes: current knowledge, gaps and future directions. PubMed DOI
van Handel E., Nayar J. K. (1972). Turn-over of diglycerides during flight and rest in the moth PubMed DOI
van Nieukerken E. J., Kaila L., Kitching I. J., Kristensen N. P., Lees D. C., Minet J., et al. (2011). Order Lepidoptera, Linnaeus, 1758.
Veerman A., Van Zon J. C. J. (1965). Insect pollination of pansies ( DOI
Verlinden H., Vleugels R., Zels S., Dillen S., Lenaerts C., Crabbé K., et al. (2014). Receptors for neuronal or endocrine signalling molecules as potential targets for the control of insect pests. DOI
Wang Q., Zhang Z., Tang G. (2016). The mitochondrial genome of PubMed DOI
Weaver R. J., Marco H. G., Šimek P., Audsley N., Clark K. D., Gäde G. (2012). Adipokinetic hormones (AKHs) of sphingid Lepidoptera, including the identification of a second PubMed DOI
Xu G., Gu G.-X., Teng Z.-W., Wu S.-F., Huang J., Song Q.-S., et al. (2016). Identification and expression profiles of neuropeptides and their G protein-coupled receptors in the rice stem borer PubMed PMC
Zebe E. (1954). Über den Stoffwechsel der Lepidopteren. DOI
Zhang Q., Nachman R. J., Kaczmarek K., Zabrocki J., Denlinger D. L. (2011). Disruption of insect diapause using agonists and an antagonist of diapause hormone. PubMed DOI PMC
Zheng X. L., Cong X. P., Wang X. P., Lei C. L. (2011). A review of geographic distribution, overwintering and migration in
Ziegler R., Eckart K., Law J. H. (1990). Adipokinetic hormone controls lipid metabolism in adults and carbohydrate metabolism in larvae of PubMed DOI
Ziegler R., Eckart K., Schwarz H., Keller R. (1985). Amino acid sequence of PubMed DOI
Ziegler R., Gäde G. (1984). Preliminary characterization of glycogen phosphorylase activating hormone and adipokinetic hormone from DOI
Ziegler R., Schulz M. (1986a). Regulation of carbohydrate metabolism during flight in DOI
Ziegler R., Schulz M. (1986b). Regulation of lipid metabolism during flight in DOI
Zöllner N., Kirsch K. (1962). Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen sulfophosphovanillin Reaktion. DOI