Epigenetic clock as a correlate of anxiety
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
CIHR - Canada
PubMed
33395955
PubMed Central
PMC7585143
DOI
10.1016/j.nicl.2020.102458
PII: S2213-1582(20)30295-3
Knihovny.cz E-zdroje
- Klíčová slova
- Anxiety, DNA methylation age, Frontal lobe, Gray matter volume, Sex differences,
- MeSH
- depresivní porucha unipolární * MeSH
- dítě MeSH
- epigeneze genetická genetika MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- šedá hmota MeSH
- těhotenství MeSH
- úzkost genetika MeSH
- úzkostné poruchy MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
DNA methylation changes consistently throughout life and age-dependent alterations in DNA methylation can be used to estimate one's epigenetic age. Post-mortem studies revealed higher epigenetic age in brains of patients with major depressive disorder, as compared with controls. Since MDD is highly correlated with anxiety, we hypothesized that symptoms of anxiety, as well as lower volume of grey matter (GM) in depression-related cortical regions, will be associated with faster epigenetic clock in a community-based sample of young adults. Participants included 88 young adults (53% men; 23-24 years of age) from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) who participated in its neuroimaging follow-up and provided saliva samples for epigenetic analysis. Epigenetic age was calculated according to Horvath (Horvath, 2013). Women had slower epigenetic clock than men (Cohen's d = 0.48). In women (but not men), slower epigenetic clock was associated with less symptoms of anxiety. In the brain, women (but not men) with slower epigenetic clock had greater GM volume in the cerebral cortex (brain size-corrected; R2 = 0.07). Lobe-specific analyses showed that in women (but not men), slower epigenetic clock was associated with greater GM volume in frontal lobe (R2 = 0.16), and that GM volume in frontal lobe mediated the relationship between the speed of epigenetic clock and anxiety trait (ab = 0.15, SE = 0.15, 95% CI [0.007; 0.369]). These findings were not replicated, however, in a community-based sample of adolescents (n = 129; 49% men; 12-19 years of age), possibly due to the different method of tissue collection (blood vs. saliva) or additional sources of variability in the cohort of adolescents (puberty stages, socioeconomic status, prenatal exposure to maternal smoking during pregnancy).
Hospital for Sick Children University of Toronto 686 Bay Street Toronto ON M5G0A4 Canada
Institute for Clinical Evaluative Sciences 2075 Bayview Avenue Toronto ON M4N3M5 Canada
RECETOX Faculty of Science Masaryk University 5 Kamenice Brno 62500 Czech Republic
Zobrazit více v PubMed
Ustun T.B., Ayuso-Mateos J.L., Chatterji S., Mathers C., Murray C.J. Global burden of depressive disorders in the year 2000. Br. J. Psychiatry. 2004;184:386–392. PubMed
Kessler R.C., Berglund P., Demler O., Jin R., Merikangas K.R., Walters E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry. 2005;62:593–602. PubMed
America AaDAo (2018): Facts and Statistics.
Jacobson N.C., Newman M.G. Anxiety and depression as bidirectional risk factors for one another: a meta-analysis of longitudinal studies. Psychol. Bull. 2017;143:1155–1200. PubMed
Sibille E. Molecular aging of the brain, neuroplasticity, and vulnerability to depression and other brain-related disorders. Dialogues Clin. Neurosci. 2013;15:53–65. PubMed PMC
Rozycka A., Liguz-Lecznar M. The space where aging acts: focus on the GABAergic synapse. Aging Cell. 2017;16:634–643. PubMed PMC
Ding Y., Chang L.C., Wang X., Guilloux J.P., Parrish J., Oh H. Molecular and genetic characterization of depression: overlap with other psychiatric disorders and aging. Mol. Neuropsychiatry. 2015;1:1–12. PubMed PMC
Schutte N.S., Malouff J.M. The association between depression and leukocyte telomere length: a meta-analysis. Depress Anxiety. 2015;32:229–238. PubMed
Ridout K.K., Ridout S.J., Price L.H., Sen S., Tyrka A.R. Depression and telomere length: a meta-analysis. J. Affect. Disord. 2016;191:237–247. PubMed PMC
Han L.K.M., Aghajani M., Clark S.L., Chan R.F., Hattab M.W., Shabalin A.A. Epigenetic aging in major depressive disorder. Am. J. Psychiatry. 2018;175:774–782. PubMed PMC
Hannum G., Guinney J., Zhao L., Zhang L., Hughes G., Sadda S. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell. 2013;49:359–367. PubMed PMC
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115. PubMed PMC
Ducharme S., Albaugh M.D., Nguyen T.V., Hudziak J.J., Mateos-Perez J.M., Labbe A. Trajectories of cortical thickness maturation in normal brain development–The importance of quality control procedures. Neuroimage. 2016;125:267–279. PubMed PMC
Walhovd K.B., Fjell A.M., Giedd J., Dale A.M., Brown T.T. Through Thick and thin: a need to reconcile contradictory results on trajectories in human cortical development. Cereb. Cortex. 2017;27:1472–1481. PubMed PMC
Petanjek Z., Judas M., Simic G., Rasin M.R., Uylings H.B., Rakic P. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc. Natl. Acad. Sci. USA. 2011;108:13281–13286. PubMed PMC
Miller D.J., Duka T., Stimpson C.D., Schapiro S.J., Baze W.B., McArthur M.J. Prolonged myelination in human neocortical evolution. Proc. Natl. Acad. Sci. USA. 2012;109:16480–16485. PubMed PMC
Shaw P., Kabani N.J., Lerch J.P., Eckstrand K., Lenroot R., Gogtay N. Neurodevelopmental trajectories of the human cerebral cortex. J. Neurosci. 2008;28:3586–3594. PubMed PMC
Giedd J.N., Rapoport J.L. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010;67:728–734. PubMed PMC
Fjell A.M., Grydeland H., Krogsrud S.K., Amlien I., Rohani D.A., Ferschmann L. Development and aging of cortical thickness correspond to genetic organization patterns. Proc. Natl. Acad. Sci. USA. 2015;112:15462–15467. PubMed PMC
Pfefferbaum A., Rohlfing T., Rosenbloom M.J., Chu W., Colrain I.M., Sullivan E.V. Variation in longitudinal trajectories of regional brain volumes of healthy men and women (ages 10 to 85 years) measured with atlas-based parcellation of MRI. Neuroimage. 2013;65:176–193. PubMed PMC
Fletcher E., Gavett B., Harvey D., Farias S.T., Olichney J., Beckett L. Brain volume change and cognitive trajectories in aging. Neuropsychology. 2018;32:436–449. PubMed PMC
Giedd J.N., Blumenthal J., Jeffries N.O., Castellanos F.X., Liu H., Zijdenbos A. Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 1999;2:861–863. PubMed
Gotlib I.H., Joormann J. Cognition and depression: current status and future directions. Annu. Rev. Clin. Psychol. 2010;6:285–312. PubMed PMC
Joormann J., Quinn M.E. Cognitive processes and emotion regulation in depression. Depress Anxiety. 2014;31:308–315. PubMed
Joormann J., Tanovic E. Cognitive vulnerability to depression: examining cognitive control and emotion regulation. Curr. Opin. Psychol. 2015;4:86–92.
Salthouse T.A. How general are the effects of trait anxiety and depressive symptoms on cognitive functioning? Emotion. 2012;12:1075–1084. PubMed PMC
Frodl T.S., Koutsouleris N., Bottlender R., Born C., Jager M., Scupin I. Depression-related variation in brain morphology over 3 years: effects of stress? Arch. Gen. Psychiatry. 2008;65:1156–1165. PubMed
Schmaal L., Hibar D.P., Samann P.G., Hall G.B., Baune B.T., Jahanshad N. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry. 2017;22:900–909. PubMed PMC
Davis E.G., Humphreys K.L., McEwen L.M., Sacchet M.D., Camacho M.C., MacIsaac J.L. Accelerated DNA methylation age in adolescent girls: associations with elevated diurnal cortisol and reduced hippocampal volume. Transl. Psychiatry. 2017;7 PubMed PMC
Pausova Z., Paus T., Abrahamowicz M., Bernard M., Gaudet D., Leonard G. Cohort Profile: The Saguenay Youth Study (SYS) Int. J. Epidemiol. 2017;46 PubMed PMC
Tanaka C., Matsui M., Uematsu A., Noguchi K., Miyawaki T. Developmental trajectories of the fronto-temporal lobes from infancy to early adulthood in healthy individuals. Dev. Neurosci. 2012;34:477–487. PubMed
Organization WH (2002): Gender Disparities in Mental Health.
Organization WH (2016): Global Health Estimates 2015: Disease burden by Cause, Age, Sex, by Country and by Region, 2000-2015.
Prokhorskas R., Ignatyeva R., Dragonas T., Golding J. European longitudinal study of pregnancy and childhood (ELSPAC) Paediatr. Perinat. Epidemiol. 1989;3:460–469. PubMed
Piler P., Kandrnal V., Kukla L., Andryskova L., Svancara J., Jarkovsky J. Cohort Profile: The European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Czech Republic. Int. J. Epidemiol. 2017;46 1379–1379f. PubMed PMC
Tian Y., Morris T.J., Webster A.P., Yang Z., Beck S., Feber A. ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinformatics. 2017;33:3982–3984. PubMed PMC
Teschendorff A.E., Marabita F., Lechner M., Bartlett T., Tegner J., Gomez-Cabrero D. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29:189–196. PubMed PMC
Spielberger C.D., Gorsuch R.L., Lushene R., Vagg P.R., Jacobs G.A. Consulting Psychological Press; Palo Alto, CA: 1983. Manual for the State-Trait Anxiety Inventory.
Suarez A., Lahti J., Czamara D., Lahti-Pulkkinen M., Girchenko P., Andersson S. The epigenetic clock and pubertal, neuroendocrine, psychiatric, and cognitive outcomes in adolescents. Clin. Epigenetics. 2018;10:96. PubMed PMC
Binder A.M., Corvalan C., Mericq V., Pereira A., Santos J.L., Horvath S. Faster ticking rate of the epigenetic clock is associated with faster pubertal development in girls. Epigenetics. 2018;13:85–94. PubMed PMC
Simpkin A.J., Hemani G., Suderman M., Gaunt T.R., Lyttleton O., McArdle W.L. Prenatal and early life influences on epigenetic age in children: a study of mother-offspring pairs from two cohort studies. Hum. Mol. Genet. 2016;25:191–201. PubMed PMC
Javed R., Chen W., Lin F., Liang H. Infant's DNA methylation age at birth and epigenetic aging accelerators. Biomed Res. Int. 2016;2016:4515928. PubMed PMC
Lee K.W., Richmond R., Hu P., French L., Shin J., Bourdon C. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ. Health Perspect. 2015;123:193–199. PubMed PMC
Houseman E.A., Accomando W.P., Koestler D.C., Christensen B.C., Marsit C.J., Nelson H.H. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinf. 2012;13:86. PubMed PMC
Lucas C.P., Zhang H., Fisher P.W., Shaffer D., Regier D.A., Narrow W.E. The DISC Predictive Scales (DPS): efficiently screening for diagnoses. J. Am. Acad. Child Adolesc. Psychiatry. 2001;40:443–449. PubMed
Horvath S., Gurven M., Levine M.E., Trumble B.C., Kaplan H., Allayee H. An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17:171. PubMed PMC
Case A., Paxson C. Sex differences in morbidity and mortality. Demography. 2005;42:189–214. PubMed
Oksuzyan A., Juel K., Vaupel J.W., Christensen K. Men: good health and high mortality. Sex differences in health and aging. Aging Clin. Exp. Res. 2008;20:91–102. PubMed PMC
Levine M.E., Lu A.T., Chen B.H., Hernandez D.G., Singleton A.B., Ferrucci L. Menopause accelerates biological aging. Proc. Natl. Acad. Sci. USA. 2016;113:9327–9332. PubMed PMC
Wierenga L.M., Langen M., Oranje B., Durston S. Unique developmental trajectories of cortical thickness and surface area. Neuroimage. 2014;87:120–126. PubMed
Wang T., Li M., Xu S., Liu B., Wu T., Lu F. Relations between trait anxiety and depression: a mediated moderation model. J. Affect. Disord. 2019;244:217–222. PubMed
Weger M., Sandi C. High anxiety trait: a vulnerable phenotype for stress-induced depression. Neurosci. Biobehav. Rev. 2018;87:27–37. PubMed
Simons R.L., Lei M.K., Beach S.R., Philibert R.A., Cutrona C.E., Gibbons F.X. Economic hardship and biological weathering: the epigenetics of aging in a U.S. sample of black women. Soc. Sci. Med. 2016;150:192–200. PubMed PMC
Hughes A., Smart M., Gorrie-Stone T., Hannon E., Mill J., Bao Y. Socioeconomic position and DNA methylation age acceleration across the life course. Am. J. Epidemiol. 2018;187:2346–2354. PubMed PMC
Boes A.D., McCormick L.M., Coryell W.H., Nopoulos P. Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children. Biol. Psychiatry. 2008;63:391–397. PubMed PMC
Fallucca E., MacMaster F.P., Haddad J., Easter P., Dick R., May G. Distinguishing between major depressive disorder and obsessive-compulsive disorder in children by measuring regional cortical thickness. Arch. Gen. Psychiatry. 2011;68:527–533. PubMed PMC
Shad M.U., Muddasani S., Rao U. Gray matter differences between healthy and depressed adolescents: a voxel-based morphometry study. J. Child Adolesc. Psychopharmacol. 2012;22:190–197. PubMed PMC
Reynolds S., Carrey N., Jaworska N., Langevin L.M., Yang X.R., Macmaster F.P. Cortical thickness in youth with major depressive disorder. BMC Psychiatry. 2014;14:83. PubMed PMC
Whittle S., Lichter R., Dennison M., Vijayakumar N., Schwartz O., Byrne M.L. Structural brain development and depression onset during adolescence: a prospective longitudinal study. Am. J. Psychiatry. 2014;171:564–571. PubMed
Mitochondrial DNA variants and their impact on epigenetic and biological aging in young adulthood