Utilization of the Validated Windshield Material Model in Simulation of Tram to Pedestrian Collision
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TRIO FV20441
Ministerstvo Průmyslu a Obchodu
SGS-2019-002
internal research project of University of West Bohemia
PubMed
33430339
PubMed Central
PMC7825814
DOI
10.3390/ma14020265
PII: ma14020265
Knihovny.cz E-zdroje
- Klíčová slova
- HIC, crash, pedestrian, tram, windshield model,
- Publikační typ
- časopisecké články MeSH
The rail industry has been significantly affected by the passive safety technology in the last few years. The tram front-end design must fulfill the new requirements for pedestrian passive safety performance in the near future. The requirements are connected with a newly prepared technical guide "Tramway front end design" prepared by Technical Agency for ropeways and Guided Transport Systems. This paper describes research connected with new tram front-end design safe for pedestrians. The brief description of collision scenario and used human-body model "Virthuman" is provided. The numerical simulations (from field of passive safety) are supported by experiments. The interesting part is the numerical model of the tram windshield experimentally validated here. The results of simulations are discussed at the end of paper.
Zobrazit více v PubMed
Špirk S., Špička J., Vychytil J. Simulation of Tram-Pedestrian Collision with Validated Windshield Material Model; Proceedings of the 58th International Conference on Experimental Stress Analysis-EAN2020; Sobotín, Czech Republic. 19–22 October 2020.
WHO . Global Status Report on Road Safety in 2015. World Health Organisation; Geneva, Switzerland: 2015. [(accessed on 13 June 2015)]. Available online: https://www.who.int/violence_injury_prevention/road_safety_status/2015/en/
Besip . Overview of the Road Accident in the EU [Online] Ministry of Transportation; Toronto, Canada: 2016. [(accessed on 6 December 2016)]. Available online: http://www.ibesip.cz/cz/statistiky/statistiky-nehodovosti-v-evrope/prehled-vyvojedopravnich-nehod-v-eu.
Policie Č.R. Overview of Road Accident in the Czech Republic in the 2014. Police Presidium of the Czech Republic; Praha, Czech Republic: 2015. [(accessed on 3 February 2015)]. Directorate of Transport Police. Available online: http://www.policie.cz/clanek/statistika-nehodovosti-900835.aspx?Q=y2hudw09mw%3d%3d.
Ramamurthy P., Blundell M.V., Bastien C., Zhang Y. Computer simulation of real-World vehicle–Pedestrian impacts. Int. J. Crashworthiness. 2011;16:351–363. doi: 10.1080/13588265.2011.586608. DOI
Yang J., Yao J., Otte D. Correlation of different impact conditions to the injury severity of pedestrians in real world accidents; Proceedings of the 19th International Technical Conf. Enhanced Safety of Vehicle; Washington, DC, USA. 6–9 June 2005.
TAČR TA04030689 . Development of Active Car Bonnet with Respect to the Diversity of the Human Population and Implementation of the Biomechanical Model of Human Body. Intermediate Report; Pilsen, Czech Republic: 2015.
Guesset A. Tramway Front End Design STRMTG. The Technical Guides; Grenoble, France: 2016. Technical Agency for Ropeway and Guided Transport System. Ver. 01.
EuroNCAP . Assessment Protocol–Vulnerable Road User Protection. EuroNCAP; Leuven, Belgium: 2019. [(accessed on 11 December 2019)]. Ver. 10.0.2. Available online: https://www.euroncap.com/en/for-engineers/protocols/vulnerable-road-user-vru-protection/
EuroNCAP . Assessment Protocol–Adult Occupant Protection. EuroNCAP; Leuven, Belgium: 2013. [(accessed on 20 September 2013)]. Ver. 6.0. Available online: http://www.globalncap.org/wp-content/uploads/2013/06/assessment-protocol-Adult.pdf.
Schmitt K.U., Niederer P., Muser M., Walz F. Trauma Biomechanics. Springer; Berlin/Heidelberg, Germany: 2010. pp. 143–152.
Špička J., Vychytil J., Maňas J., Pavlata P., Motl J. Modelling of Real Car-To-Pedestrian Accident: Comparison of Various Approaches in the Car Bonnet Modelling; Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics; Prague, Czech Republic. 2 February 2017.
Špička J., Vychytil J., Hynčík L. Applied and Computational Mechanics. Volume 10 The University of West Bohemia; Pilsen, Czech Republic: 2017. Numerical Analysis of a Pedestrian to Car Collision: Effect of Variations in Walk.
TRIO FV20441 . Research and Development of Safe Tram Face—Parametric and Sensitivity Studies of Alternative Solutions for Tram Face Shaping. Intermediate Report; Pilsen, Czech Republic: 2019.
Vychytil J., Maňas J., Čechová H., Špirk S., Hynčík L., Kovář L. Scalable Multi-Purpose Virtual Human Model for Future Safety Assessment (No. 2014-01-0534) The University of West Bohemia; Pilsen, Czech Republic: 2014. SAE Technical Paper.
Maňas J., Kovář L., Petřík J., Čechová H., Špirk S. Advances in Mechanisms Design. Springer; Berlin/Heidelberg, Germany: 2012. Validation of human body model VIRTHUMAN and its implementation in crash scenarios; pp. 351–356.
Vychytil J., Hynčík L., Maňas J., Pavlata P., Striegler R., Moser T., Valášek R. Prediction of Injury Risk in Pedestrian Accidents Using VIRTual Human Model VIRTHUMAN: Real Case and Parametric Study (No. 2016-01-1511) The University of West Bohemia; Pilsen, Czech Republic: 2016. SAE Technical Paper.
Hynčík L., Špička J., Maňas J., Vychytil J. Stature Based Approach towards Vehicle Safety, (No. 2015-26-0209) The University of West Bohemia; Pilsen, Czech Republic: 2005. SAE Technical Paper.
Hynčík L., Bońkowski T., Vychytil J. Virtual hybrid human body model for PTW safety assessment. Appl. Comput. Mech. 2017;11:2017137. doi: 10.24132/acm.2017.389. DOI
ESI . Virtual Perfomance Solution. Mecas ESI; Plzeň, Czech Republic: 2019. Rev.2; VPS Explicit MBS Model.
Scataglini S., Gunther P. DHM and Posturography. Academic Press; New York, NY, USA: 2019.
Kosiński P., Osiński J. Laminated Windshield Breakage Modelling in the Context of Headform Impact Homologation Tests. Int. J. Appl. Mech. Eng. 2015;20:87–96. doi: 10.1515/ijame-2015-0006. DOI
Peng Y., Yang J., Deck C., Willinger R. Finite element modeling of crash test behavior for windshield laminated glass. Int. J. Impact Eng. 2013;57:27–35.
Pyttel T., Liebertz H., Cai J. Failure criterion for laminated glass under impact loading and its application in finite element simulation. Int. J. Impact Eng. 2011;38:252–263.
Barbat S.D., Jeong H.Y., Prasad P. Finite Element Modeling and Development of the Deformable Featureless Headform and Its Applications to Vehicle Interior Head Impact Testing. SAE Transactions SAE; Warrendale, PA, USA: 1996.
Kamalakkannan S.B., Guenther D.A., Wiechel J.F., Stammen J. MADYMO Modeling of the IHRA Head-Form Impactor; Proceedings of the SAE Digital Human Modeling for Design and Engineering Conference; Warrendale, PA, USA. 4–6 July 2005.
Barbosa A., Fernandes F.A.O., Sousa A.d.R.J., Ptak M., Wilhelm J. Computational Modeling of Skull Bone Structures and Simulation of Skull Fractures Using the YEAHM Head Model. Biology. 2020;9:267. doi: 10.3390/biology9090267. PubMed DOI PMC
Mohan P., Marzougui D., Kan C.-D. Development and Validation of Hybrid III Crash Test Dummy; Proceedings of the SAE World Congress & Exhibition; Detroit, MI, USA. 2009.
Keller U.H., Mortelmans H. Adhesion in Laminated Glass; What Makes it Work? Glass Performance Days; Tampere, Finland: 1999. pp. 353–356.
Santarsiero M., Louter C., Nussbaumer A. Laminated connections for structural glass applications under shear loading at different temperatures and strain rates. Constr. Build. Mater. 2016;128:214–237. doi: 10.1016/j.conbuildmat.2016.10.045. DOI
Pelfrene J., Dam S., Spronk S., Paepegem V.W. Experimental Characterization and Finite Element Modelling of Strain-rate Dependent Hyperelastic Properties of PVB Interlayers; Proceedings of the Challenging Glass Conference 6At; Delft, The Netherlands. 17–18 May 2018.
Prasongngen J., Putra I.P.A., Koetniyom S., Carmai J. Improvement of windshield laminated glass model for finite element simulation of head-To-Windshield impacts; Proceedings of the 2019 IOP Conference Series: Materials Science and Engineering; Kunming, China. 25–29 May 2019.
Warsiyanto B.A. Bird Strike Analysis on 19 Passenger Aircraft Windshield with Different Thickness and Impact Velocity. J. Teknol. Kedirgant. 2020;5 doi: 10.35894/jtk.v5i2.5. DOI
Schuster M., Schneider J., Nguyen T.A. Investigations on the execution and evaluation of the Pummel test for polyvinyl butyral based interlayers. Glas. Struct. Eng. 2020;5:371–396. doi: 10.1007/s40940-020-00120-y. DOI
Bláha P., Šedivý V., Čechovský K., Kosová A. Anthropometric Studies of the Czechoslovak Population from 6 to 55 Years. Volume 1 Czechoslovak spartakiade; Praha, Czech Republic: 1985. part 2.
Robbins D.H. Anthropometric Specifications for Mid-Sized Male Dummy. University of Michigan Transportation Research Institute (UMTRI); Pilsen, Czech Republic: 1983.
Kossakowski P. Influence of Initial Porosity on Strength Properties of S235JR Steel at Low Stress Triaxiality. Arch. Civ. Eng. 2012;58:293–308.
Duffy V., Salvendy G. Handbook of Digital Human Modeling: Research for Applied Ergonomics and Human Factors Engineering. CRC Press; Boca Raton, FL, USA: 2008.
Optimization of Components with Topology Optimization for Direct Additive Manufacturing by DLMS
Special Issue: Selected Papers from Experimental Stress Analysis 2020