Optimization of Components with Topology Optimization for Direct Additive Manufacturing by DLMS
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS-2022-009
University of West Bohemia
PubMed
37570126
PubMed Central
PMC10419469
DOI
10.3390/ma16155422
PII: ma16155422
Knihovny.cz E-zdroje
- Klíčová slova
- L-PBF, additive manufacturing, design methodology, numerical simulation, process simulation, topology optimization,
- Publikační typ
- časopisecké články MeSH
This paper presents a novel design methodology that validates and utilizes the results of topology optimization as the final product shape. The proposed methodology aims to streamline the design process by eliminating the need for remodeling and minimizing printing errors through process simulation. It also eliminates the repeated export and import of data between software tools. The study includes a case study involving the steering column housing of a racing car, where Siemens NX Topology Optimization was used for optimization, and verification analysis was conducted using the NX Nastran solver. The final solution was fabricated using AlSi10Mg via direct metal laser sintering on a 3D printer and successfully validated under real conditions. In conclusion, this paper introduces a comprehensive design methodology for the direct utilization of topology optimization, which was validated through a case study, yielding positive results.
Zobrazit více v PubMed
Cao B., Zhao J., Yang P., Gu Y., Muhammad K., Rodrigues J.J.P.C., De Albuquerque V.H.C. Multiobjective 3-D Topology Optimization of Next-Generation Wireless Data Center Network. IEEE Trans. Ind. Inf. 2020;16:3597–3605. doi: 10.1109/TII.2019.2952565. DOI
Galilei G., Elzevir B., Elzevir A. Discorsi e Dimostrazioni Matematiche Intorno à Due Nuoue Scienze, Attenenti Alla Mecanica & i Movimenti Locali. Elsevier; Leida, The Netherlands: 1638.
Michell A.G.M. LVIII. The Limits of Economy of Material in Frame-Structures. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1904;8:589–597. doi: 10.1080/14786440409463229. DOI
Raz K., Hora J., Pavlata P. Unconventional Materials Usage in Design of Vehicle Bodies. Manuf. Technol. 2017;17:823–827. doi: 10.21062/ujep/x.2017/a/1213-2489/MT/17/5/823. DOI
Rao S.S. Engineering Optimization: Theory and Practice. 4th ed. Wiley; Hoboken, NJ, USA: 2009.
Goncharov P. Engineering Analysis with NX Advanced Simulation. Lulu Press; Raleigh, NC, USA: 2014.
Kim H.-G., Nerse C., Wang S. Topography Optimization of an Enclosure Panel for Low-Frequency Noise and Vibration Reduction Using the Equivalent Radiated Power Approach. Mater. Des. 2019;183:108125. doi: 10.1016/j.matdes.2019.108125. DOI
Papadrakakis M., Tsompanakis Y., Hinton E., Sienz J. Advanced Solution Methods in Topology Optimization and Shape Sensitivity Analysis. Eng. Comput. 1996;13:57–90. doi: 10.1108/02644409610120696. DOI
Xiao Z., Yang Y., Wang D., Song C., Bai Y. Structural Optimization Design for Antenna Bracket Manufactured by Selective Laser Melting. Rapid Prototyp. J. 2018;24:539–547. doi: 10.1108/RPJ-05-2017-0084. DOI
Bendsoe M.P., Sigmund O. Topology Optimization: Theory, Methods, and Applications. 2nd ed. Springer; Berlin/Heidelberg, Germany: 2004.
Prager W., Rozvany G.I.N. Optimization of Structural Geometry. In: Bednarek A.R., Cesari L., editors. Dynamical Systems. Academic Press; Cambridge, MA, USA: 1977. pp. 265–293.
Tang Y., Zhao Y.F. A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance. Rapid Prototyp. J. 2016;22:569–590. doi: 10.1108/RPJ-01-2015-0011. DOI
Rozvany G.I.N. A Critical Review of Established Methods of Structural Topology Optimization. Struct. Multidisc. Optim. 2009;37:217–237. doi: 10.1007/s00158-007-0217-0. DOI
Bendsøe M.P., Sigmund O. Material Interpolation Schemes in Topology Optimization. Arch. Appl. Mech. (Ing. Arch.) 1999;69:635–654. doi: 10.1007/s004190050248. DOI
Bendsøe M.P. Optimal Shape Design as a Material Distribution Problem. Struct. Optim. 1989;1:193–202. doi: 10.1007/BF01650949. DOI
Zhou M., Rozvany G.I.N. The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization. Comput. Methods Appl. Mech. Eng. 1991;89:309–336. doi: 10.1016/0045-7825(91)90046-9. DOI
Stolpe M., Svanberg K. An Alternative Interpolation Scheme for Minimum Compliance Topology Optimization. Struct. Multidiscip. Optim. 2001;22:116–124. doi: 10.1007/s001580100129. DOI
Allaire G. Topology Optimization in Structural Mechanics. Springer; Vienna, Austria: 1997. The Homogenization Method for Topology and Shape Optimization; pp. 101–133.
Beckers M., Fleury C. Topology Optimization Involving Discrete Variables; Proceedings of the Second World Congress of Structural and Multidisciplinary Optimization; Zakopane, Poland. 26–30 May 1997; Warszawa, Poland: Polish Academy of Sciences, Institute of Fundamental Technological Research; 1997. pp. 533–538.
Xie Y.M., Huang X. Proceedings of the IOP Conference Series: Materials Science and Engineering. Volume 10. IOP Publishing; Bristol, UK: 2010. Recent Developments in Evolutionary Structural Optimization (ESO) for Continuum Structures; p. 012196.
Querin O.M., Young V., Steven G.P., Xie Y.M. Computational Efficiency and Validation of Bi-Directional Evolutionary Structural Optimisation. Comput. Methods Appl. Mech. Eng. 2000;189:559–573. doi: 10.1016/S0045-7825(99)00309-6. DOI
Querin O.M., Steven G.P., Xie Y.M. Evolutionary Structural Optimisation Using an Additive Algorithm. Finite Elem. Anal. Des. 2000;34:291–308. doi: 10.1016/S0168-874X(99)00044-X. DOI
Terminology for Additive Manufacturing Technologies. ASTM International; West Conshohocken, PA, USA: 2012.
Bull G., Haj-Hariri H., Atkins R., Moran P. An Educational Framework for Digital Manufacturing in Schools. 3D Print. Addit. Manuf. 2015;2:42–49. doi: 10.1089/3dp.2015.0009. DOI
Scott A., Harrison T.P. Additive Manufacturing in an End-to-End Supply Chain Setting. 3D Print. Addit. Manuf. 2015;2:65–77. doi: 10.1089/3dp.2015.0005. DOI
Seepersad C.C. Challenges and Opportunities in Design for Additive Manufacturing. 3D Print. Addit. Manuf. 2014;1:10–13. doi: 10.1089/3dp.2013.0006. DOI
Gordon R. Trends in Commercial 3D Printing and Additive Manufacturing. 3D Print. Addit. Manuf. 2015;2:89–90. doi: 10.1089/3dp.2015.28999.rgo. DOI
Hosny A., Keating S.J., Dilley J.D., Ripley B., Kelil T., Pieper S., Kolb D., Bader C., Pobloth A.-M., Griffin M., et al. From Improved Diagnostics to Presurgical Planning: High-Resolution Functionally Graded Multimaterial 3D Printing of Biomedical Tomographic Data Sets. 3D Print. Addit. Manuf. 2018;5:103–113. doi: 10.1089/3dp.2017.0140. DOI
Additive Manufacturing—General Principles—Part 2: Overview of Process Categories and Feedstock. ISO; Geneva, Switzerland: 2015.
Additive Manufacturing—General Principles—Requirements for Purchased AM Parts. ISO; Geneva, Switzerland: 2017.
Barnatt C. 3D Printing: Third Edition. CreateSpace Independent Publishing Platform; Scotts Valey, CA, USA: 2016.
Standard Specification for Additive Manufacturing File Format. ISO; Geneva, Switzerland: 2013.
Standard Terminology for Additive Manufacturing–General Principles–Terminology. ASTM International; West Conshohocken, PA, USA: 2015.
Chia H.N., Wu B.M. Recent Advances in 3D Printing of Biomaterials. J. Biol. Eng. 2015;9:4. doi: 10.1186/s13036-015-0001-4. PubMed DOI PMC
Snyder T.J., Andrews M., Weislogel M., Moeck P., Stone-Sundberg J., Birkes D., Hoffert M.P., Lindeman A., Morrill J., Fercak O., et al. 3D Systems’ Technology Overview and New Applications in Manufacturing, Engineering, Science, and Education. 3D Print. Addit. Manuf. 2014;1:169–176. doi: 10.1089/3dp.2014.1502. PubMed DOI PMC
Dul S., Fambri L., Pegoretti A. Fused Deposition Modelling with ABS–Graphene Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2016;85:181–191. doi: 10.1016/j.compositesa.2016.03.013. DOI
Chacón J.M., Caminero M.A., García-Plaza E., Núñez P.J. Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection. Mater. Des. 2017;124:143–157. doi: 10.1016/j.matdes.2017.03.065. DOI
Chua C.K., Leong K.F. 3D Printing and Additive Manufacturing: Principles and Applications (with Companion Media Pack) Fourth Edition of Rapid Prototyping. 4th ed. World Scientific Publishing Company; Singapore: 2014.
Quetzeri-Santiago M.A., Hedegaard C.L., Castrejón-Pita J.R. Additive Manufacturing with Liquid Latex and Recycled End-of-Life Rubber. 3D Print. Addit. Manuf. 2019;6:149–157. doi: 10.1089/3dp.2018.0062. DOI
Miyanaji H., Zhang S., Lassell A., Zandinejad A., Yang L. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications. JOM. 2016;68:831–841. doi: 10.1007/s11837-015-1771-3. DOI
Zhou Y., Tang Y., Hoff T., Garon M., Zhao F.Y. The Verification of the Mechanical Properties of Binder Jetting Manufactured Parts by Instrumented Indentation Testing. Procedia Manuf. 2015;1:327–342. doi: 10.1016/j.promfg.2015.09.038. DOI
Mani M., Feng S., Lane B., Donmez A., Moylan S., Fesperman R. Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes. US Department of Commerce, National Institute of Standards and Technology; Gaithersburg, MD, USA: 2015.
Chen L.Y., Huang J.C., Lin C.H., Pan C.T., Chen S.Y., Yang T.L., Lin D.Y., Lin H.K., Jang J.S.C. Anisotropic Response of Ti-6Al-4V Alloy Fabricated by 3D Printing Selective Laser Melting. Mater. Sci. Eng. A. 2017;682:389–395. doi: 10.1016/j.msea.2016.11.061. DOI
Brandt M., editor. Laser Additive Manufacturing: Materials, Design, Technologies, and Applications. Elsevier/Woodhead Publishing; Boston, MA, USA: 2017. (Woodhead Publishing Series in Electronic and Optical Materials).
Sutton A.T., Kriewall C.S., Leu M.C., Newkirk J.W. Powder Characterisation Techniques and Effects of Powder Characteristics on Part Properties in Powder-Bed Fusion Processes. Virtual Phys. Prototyp. 2017;12:3–29. doi: 10.1080/17452759.2016.1250605. DOI
Heigel J.C., Michaleris P., Reutzel E.W. Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti–6Al–4V. Addit. Manuf. 2015;5:9–19. doi: 10.1016/j.addma.2014.10.003. DOI
Ahmed N. Direct Metal Fabrication in Rapid Prototyping: A Review. J. Manuf. Process. 2019;42:167–191. doi: 10.1016/j.jmapro.2019.05.001. DOI
Additive Manufacturing—General Principles—Terminology. ISO; Geneva, Switzerland: 2015.
Rokicki P., Kozik B., Budzik G., Dziubek T., Bernaczek J., Przeszlowski L., Markowska O., Sobolewski B., Rzucidlo A. Manufacturing of Aircraft Engine Transmission Gear with SLS (DMLS) Method. Aircr. Eng. Aerosp. Technol. Int. J. 2016;88:397–403. doi: 10.1108/AEAT-05-2015-0137. DOI
Rahmati S. Comprehensive Materials Processing. Elsevier; Amsterdam, The Netherlands: 2014. Direct Rapid Tooling; pp. 303–344.
Korkmaz M.E., Gupta M.K., Robak G., Moj K., Krolczyk G.M., Kuntoğlu M. Development of Lattice Structure with Selective Laser Melting Process: A State of the Art on Properties, Future Trends and Challenges. J. Manuf. Process. 2022;81:1040–1063. doi: 10.1016/j.jmapro.2022.07.051. DOI
Prathyusha A.L.R., Raghu Babu G. A Review on Additive Manufacturing and Topology Optimization Process for Weight Reduction Studies in Various Industrial Applications. Mater. Today Proc. 2022;62:109–117. doi: 10.1016/j.matpr.2022.02.604. DOI
Prathyusha A., Babu G.R. 3D Printing Integration with Topology Optimization for Innovative Design and Fabrication of Light Weight Aerospace Structures; Proceedings of the 2022 International Conference on Recent Trends in Microelectronics, Automation, Computing and Communications Systems (ICMACC); Hyderabad, India. 28–30 December 2022; Piscataway, NJ, USA: IEEE; 2022. pp. 1–6.
Dienemann R., Schewe F., Elham A. Industrial Application of Topology Optimization for Forced Convection Based on Darcy Flow. Struct. Multidisc. Optim. 2022;65:265. doi: 10.1007/s00158-022-03328-4. DOI
Barbieri L., Muzzupappa M. Performance-Driven Engineering Design Approaches Based on Generative Design and Topology Optimization Tools: A Comparative Study. Appl. Sci. 2022;12:2106. doi: 10.3390/app12042106. DOI
Kim J., Park J.H., Jang S., Jeong H., Kim T., Kim H.G. Effect of Support Structures on the Deformation of AlSi10Mg Aircraft Parts Made Using DMLS. Int. J. Precis. Eng. Manuf. 2023;24:837–851. doi: 10.1007/s12541-023-00774-y. DOI
Bouabbou A., Vaudreuil S. Understanding Laser-Metal Interaction in Selective Laser Melting Additive Manufacturing through Numerical Modelling and Simulation: A Review. Virtual Phys. Prototyp. 2022;17:543–562. doi: 10.1080/17452759.2022.2052488. DOI
Azami M., Siahsarani A., Hadian A., Kazemi Z., Rahmatabadi D., Kashani-Bozorg S.F., Abrinia K. Laser Powder Bed Fusion of Alumina/Fe–Ni Ceramic Matrix Particulate Composites Impregnated with a Polymeric Resin. J. Mater. Res. Technol. 2023;24:3133–3144. doi: 10.1016/j.jmrt.2023.03.181. DOI
Ghasri-Khouzani M., Peng H., Attardo R., Ostiguy P., Neidig J., Billo R., Hoelzle D., Shankar M.R. Comparing Microstructure and Hardness of Direct Metal Laser Sintered AlSi10Mg Alloy between Different Planes. J. Manuf. Process. 2019;37:274–280. doi: 10.1016/j.jmapro.2018.12.005. DOI
Krishnan M., Atzeni E., Canali R., Calignano F., Manfredi D., Ambrosio E.P., Iuliano L. On the Effect of Process Parameters on Properties of AlSi10Mg Parts Produced by DMLS. Rapid Prototyp. J. 2014;20:449–458. doi: 10.1108/RPJ-03-2013-0028. DOI
Montanari R., Palombi A., Richetta M., Varone A. Additive Manufacturing of Aluminum Alloys for Aeronautic Applications: Advantages and Problems. Metals. 2023;13:716. doi: 10.3390/met13040716. DOI
Standard Test Methods for Tension Testing of Metallic Materials. ASTM International; West Conshohocken, PA, USA: 2016.
Alsalla H.H., Smith C., Hao L. The Effect of Different Build Orientations on the Consolidation, Tensile and Fracture Toughness Properties of Direct Metal Laser Sintering Ti-6Al-4V. Rapid Prototyp. J. 2018;24:276–284. doi: 10.1108/RPJ-04-2016-0067. DOI
Promoppatum P., Yao S.-C. Influence of Scanning Length and Energy Input on Residual Stress Reduction in Metal Additive Manufacturing: Numerical and Experimental Studies. J. Manuf. Process. 2020;49:247–259. doi: 10.1016/j.jmapro.2019.11.020. DOI
Špirk S., Špička J., Vychytil J., Křížek M., Stehlík A. Utilization of the Validated Windshield Material Model in Simulation of Tram to Pedestrian Collision. Materials. 2021;14:265. doi: 10.3390/ma14020265. PubMed DOI PMC
Rypl D., Bittnar Z. Generation of Computational Surface Meshes of STL Models. J. Comput. Appl. Math. 2006;192:148–151. doi: 10.1016/j.cam.2005.04.054. DOI
Zienkiewicz O.C., Taylor R.L., Zhu J.Z. The Finite Element Method: Its Basis and Fundamentals. 7th ed. Butterworth-Heinemann; Amsterdam, The Netherlands: 2013.
Liu Y., Li Z., Wei P., Chen S. Generating Support Structures for Additive Manufacturing with Continuum Topology Optimization Methods. Rapid Prototyp. J. 2018;25:232–246. doi: 10.1108/RPJ-10-2017-0213. DOI
Jiang J., Stringer J., Xu X. Support Optimization for Flat Features via Path Planning in Additive Manufacturing. 3D Print. Addit. Manuf. 2019;6:171–179. doi: 10.1089/3dp.2017.0124. DOI
Hildreth O.J., Nassar A.R., Chasse K.R., Simpson T.W. Dissolvable Metal Supports for 3D Direct Metal Printing. 3D Print. Addit. Manuf. 2016;3:90–97. doi: 10.1089/3dp.2016.0013. DOI
Lefky C.S., Zucker B., Wright D., Nassar A.R., Simpson T.W., Hildreth O.J. Dissolvable Supports in Powder Bed Fusion-Printed Stainless Steel. 3D Print. Addit. Manuf. 2017;4:3–11. doi: 10.1089/3dp.2016.0043. DOI