Modulation of single cell circadian response to NMDA by diacylglycerol lipase inhibition reveals a role of endocannabinoids in light entrainment of the suprachiasmatic nucleus
Language English Country England, Great Britain Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33444638
DOI
10.1016/j.neuropharm.2021.108455
PII: S0028-3908(21)00009-5
Knihovny.cz E-resources
- Keywords
- Circadian, Endocannabinoids, N-Methyl-d-aspartate, PER2::LUC, Phase response curve, Suprachiasmatic nucleus,
- MeSH
- Excitatory Amino Acid Agonists pharmacology MeSH
- Circadian Rhythm drug effects physiology MeSH
- Endocannabinoids physiology MeSH
- Rats MeSH
- Lipoprotein Lipase antagonists & inhibitors metabolism MeSH
- Mice, Transgenic MeSH
- Mice MeSH
- N-Methylaspartate pharmacology MeSH
- Suprachiasmatic Nucleus cytology drug effects physiology MeSH
- Rats, Wistar MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Excitatory Amino Acid Agonists MeSH
- Endocannabinoids MeSH
- Lipoprotein Lipase MeSH
- N-Methylaspartate MeSH
Suprachiasmatic nucleus (SCN) of the hypothalamus is the master clock that drives circadian rhythms in physiology and behavior and adjusts their timing to external cues. Neurotransmitter glutamate and glutamatergic receptors sensitive to N-methyl-d-aspartate (NMDA) play a dual role in the SCN by coupling astrocytic and neuronal single cell oscillators and by resetting their phase in response to light. Recent reports suggested that signaling by endogenous cannabinoids (ECs) participates in both of these functions. We have previously shown that ECs, such as 2-arachidonoylglycerol (2-AG), act via CB1 receptors to affect the SCN response to light-mimicking NMDA stimulus in a time-dependent manner. We hypothesized that this ability is linked to the circadian regulation of EC signaling. We demonstrate that circadian clock in the rat SCN regulates expression of 2-AG transport, synthesis and degradation enzymes as well as its receptors. Inhibition of the major 2-AG synthesis enzyme, diacylglycerol lipase, enhanced the phase delay and lowered the amplitude of explanted SCN rhythm in response to NMDAR activation. Using microscopic PER2 bioluminescence imaging, we visualized how individual single cell oscillators in different parts of the SCN respond to the DAGL inhibition/NMDAR activation and shape response of the whole pacemaker. Additionally, we present strong evidence that the zero amplitude behavior of the SCN in response to single NMDA stimulus in the middle of subjective night is the result of a loss of rhythm in individual SCN cells. The paper provides new insights into the modulatory role of endocannabinoid signaling during the light entrainment of the SCN.
References provided by Crossref.org