Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
33445555
PubMed Central
PMC7827871
DOI
10.3390/ijms22020682
PII: ijms22020682
Knihovny.cz E-zdroje
- Klíčová slova
- abiotic stress, biotic stress, gene knockout, resistance breeding, trait improvement,
- MeSH
- CRISPR-Cas systémy MeSH
- editace genu * MeSH
- epigenomika metody MeSH
- geneticky modifikované rostliny MeSH
- genom rostlinný * MeSH
- genomika * metody MeSH
- genový knockdown MeSH
- mutageneze MeSH
- oxidační stres MeSH
- šlechtění rostlin * MeSH
- Solanum lycopersicum genetika MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plants regularly face the changing climatic conditions that cause biotic and abiotic stress responses. The abiotic stresses are the primary constraints affecting crop yield and nutritional quality in many crop plants. The advances in genome sequencing and high-throughput approaches have enabled the researchers to use genome editing tools for the functional characterization of many genes useful for crop improvement. The present review focuses on the genome editing tools for improving many traits such as disease resistance, abiotic stress tolerance, yield, quality, and nutritional aspects of tomato. Many candidate genes conferring tolerance to abiotic stresses such as heat, cold, drought, and salinity stress have been successfully manipulated by gene modification and editing techniques such as RNA interference, insertional mutagenesis, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9). In this regard, the genome editing tools such as CRISPR/Cas9, which is a fast and efficient technology that can be exploited to explore the genetic resources for the improvement of tomato and other crop plants in terms of stress tolerance and nutritional quality. The review presents examples of gene editing responsible for conferring both biotic and abiotic stresses in tomato simultaneously. The literature on using this powerful technology to improve fruit quality, yield, and nutritional aspects in tomato is highlighted. Finally, the prospects and challenges of genome editing, public and political acceptance in tomato are discussed.
Department of Biological Sciences University of North Texas Denton TX 76203 USA
Department of Plant Sciences University of Hyderabad Hyderabad 500064 India
Zobrazit více v PubMed
Razifard H., Ramos A., Della Valle A.L., Bodary C., Goetz E., Manser E.J., Li X., Zhang L., Visa S., Tieman D. Genomic evidence for complex domestication history of the cultivated tomato in Latin America. Mol. Biol. Evol. 2020;37:1118–1132. doi: 10.1093/molbev/msz297. PubMed DOI PMC
Meyer R.S., Purugganan M.D. Evolution of crop species: Genetics of domestication and diversification. Nat. Rev. Genet. 2013;14:840–852. doi: 10.1038/nrg3605. PubMed DOI
Parmar N., Singh K.H., Sharma D., Singh L., Kumar P., Nanjundan J., Khan Y.J., Chauhan D.K., Thakur A.K. Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: A comprehensive review. 3 Biotech. 2017;7:239. doi: 10.1007/s13205-017-0870-y. PubMed DOI PMC
Bawa A., Anilakumar K. Genetically modified foods: Safety, risks and public concerns—A review. J. Food Sci. Technol. 2013;50:1035–1046. doi: 10.1007/s13197-012-0899-1. PubMed DOI PMC
Gascuel Q., Diretto G., Monforte A.J., Fortes A.M., Granell A. Use of natural diversity and biotechnology to increase the quality and nutritional content of tomato and grape. Front. Plant Sci. 2017;8:652. doi: 10.3389/fpls.2017.00652. PubMed DOI PMC
Labate J.A., Grandillo S., Fulton T., Muños S., Caicedo A.L., Peralta I., Ji Y., Shetelat R.T., Scott J.W., Gonzalo M.J. Genome Mapping and Molecular Breeding in Plants. Volume 5 Springer; Berlin/Heidelberg, Germany: New York, NY, USA: 2007. Tomato.
Just D., Garcia V., Fernandez L., Bres C., Mauxion J.-P., Petit J., Jorly J., Assali J., Bournonville C., Ferrand C. Micro-Tom mutants for functional analysis of target genes and discovery of new alleles in tomato. Plant Biotechnol. 2013;30 doi: 10.5511/plantbiotechnology.13.0622a. DOI
Meissner R., Chague V., Zhu Q., Emmanuel E., Elkind Y., Levy A.A. A high throughput system for transposon tagging and promoter trapping in tomato. Plant J. 2000;22:265–274. doi: 10.1046/j.1365-313x.2000.00735.x. PubMed DOI
Menda N., Semel Y., Peled D., Eshed Y., Zamir D. In silico screening of a saturated mutation library of tomato. Plant J. 2004;38:861–872. doi: 10.1111/j.1365-313X.2004.02088.x. PubMed DOI
Rothan C., Diouf I., Causse M. Trait discovery and editing in tomato. Plant J. 2019;97:73–90. doi: 10.1111/tpj.14152. PubMed DOI
Ariizumi T., Kishimoto S., Kakami R., Maoka T., Hirakawa H., Suzuki Y., Ozeki Y., Shirasawa K., Bernillon S., Okabe Y. Identification of the carotenoid modifying gene PALE YELLOW PETAL 1 as an essential factor in xanthophyll esterification and yellow flower pigmentation in tomato (S olanum lycopersicum) Plant J. 2014;79:453–465. doi: 10.1111/tpj.12570. PubMed DOI
Chaudhary J., Alisha A., Bhatt V., Chandanshive S., Kumar N., Mir Z., Kumar A., Yadav S.K., Shivaraj S., Sonah H. Mutation breeding in tomato: Advances, applicability and challenges. Plants. 2019;8:128. doi: 10.3390/plants8050128. PubMed DOI PMC
Hao S., Ariizumi T., Ezura H. SEXUAL STERILITY is essential for both male and female gametogenesis in tomato. Plant Cell Physiol. 2017;58:22–34. PubMed
Isaacson T., Ronen G., Zamir D., Hirschberg J. Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell. 2002;14:333–342. doi: 10.1105/tpc.010303. PubMed DOI PMC
Minoia S., Petrozza A., D’Onofrio O., Piron F., Mosca G., Sozio G., Cellini F., Bendahmane A., Carriero F. A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res. Notes. 2010;3:69. doi: 10.1186/1756-0500-3-69. PubMed DOI PMC
Okabe Y., Asamizu E., Saito T., Matsukura C., Ariizumi T., Brès C., Rothan C., Mizoguchi T., Ezura H. Tomato TILLING technology: Development of a reverse genetics tool for the efficient isolation of mutants from Micro-Tom mutant libraries. Plant Cell Physiol. 2011;52:1994–2005. doi: 10.1093/pcp/pcr134. PubMed DOI PMC
Park S.J., Jiang K., Tal L., Yichie Y., Gar O., Zamir D., Eshed Y., Lippman Z.B. Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat. Genet. 2014;46:1337–1342. doi: 10.1038/ng.3131. PubMed DOI
Petit J., Bres C., Just D., Garcia V., Mauxion J.-P., Marion D., Bakan B., Joubès J., Domergue F., Rothan C. Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase. Plant Physiol. 2014;164:888–906. doi: 10.1104/pp.113.232645. PubMed DOI PMC
Petit J., Bres C., Mauxion J.-P., Tai F.W.J., Martin L.B., Fich E.A., Joubès J., Rose J.K., Domergue F., Rothan C. The glycerol-3-phosphate acyltransferase GPAT6 from tomato plays a central role in fruit cutin biosynthesis. Plant Physiol. 2016;171:894–913. doi: 10.1104/pp.16.00409. PubMed DOI PMC
Pulungan S.I., Yano R., Okabe Y., Ichino T., Kojima M., Takebayashi Y., Sakakibara H., Ariizumi T., Ezura H. SlLAX1 is required for normal leaf development mediated by balanced adaxial and abaxial pavement cell growth in tomato. Plant Cell Physiol. 2018;59:1170–1186. doi: 10.1093/pcp/pcy052. PubMed DOI
Shi J.X., Adato A., Alkan N., He Y., Lashbrooke J., Matas A.J., Meir S., Malitsky S., Isaacson T., Prusky D. The tomato S l SHINE 3 transcription factor regulates fruit cuticle formation and epidermal patterning. New Phytol. 2013;197:468–480. doi: 10.1111/nph.12032. PubMed DOI
Xu J., Wolters-Arts M., Mariani C., Huber H., Rieu I. Heat stress affects vegetative and reproductive performance and trait correlations in tomato (Solanum lycopersicum) Euphytica. 2017;213:156. doi: 10.1007/s10681-017-1949-6. DOI
Yeats T.H., Buda G.J., Wang Z., Chehanovsky N., Moyle L.C., Jetter R., Schaffer A.A., Rose J.K. The fruit cuticles of wild tomato species exhibit architectural and chemical diversity, providing a new model for studying the evolution of cuticle function. Plant J. 2012;69:655–666. doi: 10.1111/j.1365-313X.2011.04820.x. PubMed DOI PMC
Bai Y., Kissoudis C., Yan Z., Visser R.G., van der Linden G. Plant behaviour under combined stress: Tomato responses to combined salinity and pathogen stress. Plant J. 2018;93:781–793. doi: 10.1111/tpj.13800. PubMed DOI
Foolad M., Lin G., Chen F. Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed. 1999;118:167–173. doi: 10.1046/j.1439-0523.1999.118002167.x. DOI
Wen J., Jiang F., Weng Y., Sun M., Shi X., Zhou Y., Yu L., Wu Z. Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biol. 2019;19:398. doi: 10.1186/s12870-019-2008-3. PubMed DOI PMC
Causse M., Duffe P., Gomez M., Buret M., Damidaux R., Zamir D., Gur A., Chevalier C., Lemaire-Chamley M., Rothan C. A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J. Exp. Bot. 2004;55:1671–1685. doi: 10.1093/jxb/erh207. PubMed DOI
Liu Y.S., Gur A., Ronen G., Causse M., Damidaux R., Buret M., Hirschberg J., Zamir D. There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol. J. 2003;1:195–207. doi: 10.1046/j.1467-7652.2003.00018.x. PubMed DOI
Stevens R., Page D., Gouble B., Garchery C., Zamir D., Causse M. Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ. 2008;31:1086–1096. doi: 10.1111/j.1365-3040.2008.01824.x. PubMed DOI
Bauchet G., Grenier S., Samson N., Bonnet J., Grivet L., Causse M. Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by Genome Wide Association study. Theor. Appl. Genet. 2017;130:875–889. doi: 10.1007/s00122-017-2857-9. PubMed DOI
Shirasawa K., Fukuoka H., Matsunaga H., Kobayashi Y., Kobayashi I., Hirakawa H., Isobe S., Tabata S. Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato. DNA Res. 2013;20:593–603. doi: 10.1093/dnares/dst033. PubMed DOI PMC
Tieman D., Zhu G., Resende M.F., Lin T., Nguyen C., Bies D., Rambla J.L., Beltran K.S.O., Taylor M., Zhang B. A chemical genetic roadmap to improved tomato flavor. Science. 2017;355:391–394. doi: 10.1126/science.aal1556. PubMed DOI
Sauvage C., Segura V., Bauchet G., Stevens R., Do P.T., Nikoloski Z., Fernie A.R., Causse M. Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol. 2014;165:1120–1132. doi: 10.1104/pp.114.241521. PubMed DOI PMC
Zhang J., Zhao J., Xu Y., Liang J., Chang P., Yan F., Li M., Liang Y., Zou Z. Genome-wide association mapping for tomato volatiles positively contributing to tomato flavor. Front. Plant Sci. 2015;6:1042. doi: 10.3389/fpls.2015.01042. PubMed DOI PMC
Zhao J., Sauvage C., Zhao J., Bitton F., Bauchet G., Liu D., Huang S., Tieman D.M., Klee H.J., Causse M. Meta-analysis of genome-wide association studies provides insights into genetic control of tomato flavor. Nat. Commun. 2019;10:1–12. doi: 10.1038/s41467-019-09462-w. PubMed DOI PMC
Sun Y., Liang Y., Wu J., Li Y., Cui X., Qin L. Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum x S. pimpinellifolium cross. Genet. Mol. Res. 2012;11:3696–3710. doi: 10.4238/2012.August.17.8. PubMed DOI
Bolger A., Scossa F., Bolger M.E., Lanz C., Maumus F., Tohge T., Quesneville H., Alseekh S., Sørensen I., Lichtenstein G. The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat. Genet. 2014;46:1034–1038. doi: 10.1038/ng.3046. PubMed DOI PMC
Consortium T.G. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485:635. doi: 10.1038/nature11119. PubMed DOI PMC
Consortium T.G.S., Aflitos S., Schijlen E., de Jong H., de Ridder D., Smit S., Finkers R., Wang J., Zhang G., Li N. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 2014;80:136–148. PubMed
Gao L., Gonda I., Sun H., Ma Q., Bao K., Tieman D.M., Burzynski-Chang E.A., Fish T.L., Stromberg K.A., Sacks G.L. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 2019;51:1044–1051. doi: 10.1038/s41588-019-0410-2. PubMed DOI
Fernandez-Pozo N., Menda N., Edwards J.D., Saha S., Tecle I.Y., Strickler S.R., Bombarely A., Fisher-York T., Pujar A., Foerster H. The Sol Genomics Network (SGN)—From genotype to phenotype to breeding. Nucleic Acids Res. 2015;43:D1036–D1041. doi: 10.1093/nar/gku1195. PubMed DOI PMC
Lin T., Zhu G., Zhang J., Xu X., Yu Q., Zheng Z., Zhang Z., Lun Y., Li S., Wang X. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 2014;46:1220–1226. doi: 10.1038/ng.3117. PubMed DOI
Razali R., Bougouffa S., Morton M.J., Lightfoot D.J., Alam I., Essack M., Arold S.T., Kamau A.A., Schmöckel S.M., Pailles Y. The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance. Front. Plant Sci. 2018;9:1402. doi: 10.3389/fpls.2018.01402. PubMed DOI PMC
Zhu G., Wang S., Huang Z., Zhang S., Liao Q., Zhang C., Lin T., Qin M., Peng M., Yang C. Rewiring of the fruit metabolome in tomato breeding. Cell. 2018;172:249–261.e212. doi: 10.1016/j.cell.2017.12.019. PubMed DOI
Mondini L., Noorani A., Pagnotta M.A. Assessing plant genetic diversity by molecular tools. Diversity. 2009;1:19–35. doi: 10.3390/d1010019. DOI
Wenzel G. Molecular plant breeding: Achievements in green biotechnology and future perspectives. Appl. Microbiol. Biotechnol. 2006;70:642–650. doi: 10.1007/s00253-006-0375-9. PubMed DOI
Hidema J., Teranishi M., Iwamatsu Y., Hirouchi T., Ueda T., Sato T., Burr B., Sutherland B.M., Yamamoto K., Kumagai T. Spontaneously occurring mutations in the cyclobutane pyrimidine dimer photolyase gene cause different sensitivities to ultraviolet-B in rice. Plant J. 2005;43:57–67. doi: 10.1111/j.1365-313X.2005.02428.x. PubMed DOI
Manova V., Gruszka D. DNA damage and repair in plants—From models to crops. Front. Plant Sci. 2015;6:885. doi: 10.3389/fpls.2015.00885. PubMed DOI PMC
Brock R. The role of induced mutations in plant improvement. Radiat. Bot. 1971;11:181–196. doi: 10.1016/S0033-7560(71)90273-0. DOI
Brock R. Genetic Diversity in Plants. Springer; Boston, MA, USA: 1977. Prospects and perspectives in mutation breeding; pp. 117–132. PubMed
Veillet F., Perrot L., Chauvin L., Kermarrec M.-P., Guyon-Debast A., Chauvin J.-E., Nogué F., Mazier M. Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor. Int. J. Mol. Sci. 2019;20:402. doi: 10.3390/ijms20020402. PubMed DOI PMC
Puchta H. Applying CRISPR/Cas for genome engineering in plants: The best is yet to come. Curr. Opin. Plant Biol. 2017;36:1–8. doi: 10.1016/j.pbi.2016.11.011. PubMed DOI
Tang X., Lowder L.G., Zhang T., Malzahn A.A., Zheng X., Voytas D.F., Zhong Z., Chen Y., Ren Q., Li Q. A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants. 2017;3:1–5. PubMed
Vats S., Kumawat S., Kumar V., Patil G.B., Joshi T., Sonah H., Sharma T.R., Deshmukh R. Genome editing in plants: Exploration of technological advancements and challenges. Cells. 2019;8:1386. doi: 10.3390/cells8111386. PubMed DOI PMC
Yoder J.I. Rapid proliferation of the maize transposable element Activator in transgenic tomato. Plant Cell. 1990;2:723–730. PubMed PMC
Liu Y., Schiff M., Dinesh-Kumar S. Virus-induced gene silencing in tomato. Plant J. 2002;31:777–786. doi: 10.1046/j.1365-313X.2002.01394.x. PubMed DOI
Čermák T., Baltes N.J., Čegan R., Zhang Y., Voytas D.F. High-frequency, precise modification of the tomato genome. Genome Biol. 2015;16:232. doi: 10.1186/s13059-015-0796-9. PubMed DOI PMC
Gupta P., Reddaiah B., Salava H., Upadhyaya P., Tyagi K., Sarma S., Datta S., Malhotra B., Thomas S., Sunkum A. Next-generation sequencing (NGS)-based identification of induced mutations in a doubly mutagenized tomato (Solanum lycopersicum) population. Plant J. 2017;92:495–508. doi: 10.1111/tpj.13654. PubMed DOI
David-Schwartz R., Badani H., Smadar W., Levy A.A., Galili G., Kapulnik Y. Identification of a novel genetically controlled step in mycorrhizal colonization: Plant resistance to infection by fungal spores but not extra-radical hyphae. Plant J. 2001;27:561–569. doi: 10.1046/j.1365-313X.2001.01113.x. PubMed DOI
Negi S., Santisree P., Kharshiing E.V., Sharma R. Inhibition of the ubiquitin—Proteasome pathway alters cellular levels of nitric oxide in tomato seedlings. Mol. Plant. 2010;3:854–869. doi: 10.1093/mp/ssq033. PubMed DOI
Brooks C., Nekrasov V., Lippman Z.B., Van Eck J. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol. 2014;166:1292–1297. doi: 10.1104/pp.114.247577. PubMed DOI PMC
Liu R., How-Kit A., Stammitti L., Teyssier E., Rolin D., Mortain-Bertrand A., Halle S., Liu M., Kong J., Wu C. A DEMETER-like DNA demethylase governs tomato fruit ripening. Proc. Natl. Acad. Sci. USA. 2015;112:10804–10809. doi: 10.1073/pnas.1503362112. PubMed DOI PMC
Stadler L.J. Genetic effects of X-rays in maize. Proc. Natl. Acad. Sci. USA. 1928;14:69. doi: 10.1073/pnas.14.1.69. PubMed DOI PMC
Smith H.H. Radiation in the production of useful mutations. Bot. Rev. 1958;24:1–24. doi: 10.1007/BF02872515. DOI
Naito K., Kusaba M., Shikazono N., Takano T., Tanaka A., Tanisaka T., Nishimura M. Transmissible and nontransmissible mutations induced by irradiating Arabidopsis thaliana pollen with γ-rays and carbon ions. Genetics. 2005;169:881–889. doi: 10.1534/genetics.104.033654. PubMed DOI PMC
Okamura M., Yasuno N., Ohtsuka M., Tanaka A., Shikazono N., Hase Y. Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiated with ion beams. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003;206:574–578. doi: 10.1016/S0168-583X(03)00835-8. DOI
Shikazono N., Suzuki C., Kitamura S., Watanabe H., Tano S., Tanaka A. Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J. Exp. Bot. 2005;56:587–596. doi: 10.1093/jxb/eri047. PubMed DOI
Abe T., Ryuto H., Fukunishi N. Ion beam radiation mutagenesis. Plant Mutat. Breed. Biotechnol. 2012:99–106. doi: 10.1079/9781780640853.0099. DOI
Magori S., Tanaka A., Kawaguchi M. The Handbook of Plant Mutation Screening. WILEY-VCH Verlag; Weinheim, Germany: 2010. Physically induced mutation: Ion beam mutagenesis; pp. 3–16.
Tanaka A., Shikazono N., Hase Y. Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J. Radiat. Res. 2010;51:223–233. doi: 10.1269/jrr.09143. PubMed DOI
Mba C. Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy. 2013;3:200–231. doi: 10.3390/agronomy3010200. DOI
Kazama Y., Hirano T., Nishihara K., Ohbu S., Shirakawa Y., Abe T. Effect of high-LET Fe-ion beam irradiation on mutation induction in Arabidopsis thaliana. Genes Genet. Syst. 2013;88:189–197. doi: 10.1266/ggs.88.189. PubMed DOI
Kazama Y., Hirano T., Saito H., Liu Y., Ohbu S., Hayashi Y., Abe T. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana. BMC Plant Biol. 2011;11:161. doi: 10.1186/1471-2229-11-161. PubMed DOI PMC
Kazama Y., Ishii K., Hirano T., Wakana T., Yamada M., Ohbu S., Abe T. Different mutational function of low-and high-linear energy transfer heavy-ion irradiation demonstrated by whole-genome resequencing of Arabidopsis mutants. Plant J. 2017;92:1020–1030. doi: 10.1111/tpj.13738. PubMed DOI
Kazama Y., Ma L., Hirano T., Ohbu S., Shirakawa Y., Hatakeyama S., Tanaka S., Abe T. Rapid evaluation of effective linear energy transfer in heavy-ion mutagenesis of Arabidopsis thaliana. Plant Biotechnol. 2012;29:441–445. doi: 10.5511/plantbiotechnology.12.0921a. DOI
Cheema A.A., Atta B.M. Radiosensitivity studies in basmati rice. Pak. J. Bot. 2003;35:197–207.
Sato Y., Shirasawa K., Takahashi Y., Nishimura M., Nishio T. Mutant selection from progeny of gamma-ray-irradiated rice by DNA heteroduplex cleavage using Brassica petiole extract. Breed. Sci. 2006;56:179–183. doi: 10.1270/jsbbs.56.179. DOI
Matsukura C., Yamaguchi I., Inamura M., Ban Y., Kobayashi Y., Yin Y.-G., Saito T., Kuwata C., Imanishi S., Nishimura S. Generation of gamma irradiation-induced mutant lines of the miniature tomato (Solanum lycopersicum L.) cultivar ‘Micro-Tom’. Plant Biotechnol. 2007;24:39–44. doi: 10.5511/plantbiotechnology.24.39. DOI
Melamed S. Chemical and Physical Mutagenesis in the Tomato Cultivar Micro-Tom. Hebrew University of Jerusalem; Jerusalem, Israel: 1999.
Leitão J. Chemical mutagenesis. In: Shu Q.Y., Forster B.P., Nakagawa H., editors. Plant Mutat. Breed. Biotechnol. CABI Publishing; Wallingford, UK: 2012. pp. 135–158.
Heslot H. Manual on Mutation Breeding. Iaea Vienna Second; IAEA, Vienna: 1977. Review of main mutagenic compounds; pp. 51–58. (Technical Report Series).
Saito T., Ariizumi T., Okabe Y., Asamizu E., Hiwasa-Tanase K., Fukuda N., Mizoguchi T., Yamazaki Y., Aoki K., Ezura H. TOMATOMA: A novel tomato mutant database distributing Micro-Tom mutant collections. Plant Cell Physiol. 2011;52:283–296. doi: 10.1093/pcp/pcr004. PubMed DOI PMC
Van Harten A.M. Mutation Breeding: Theory and Practical Applications. Cambridge University Press; Cambridge, UK: 1998. p. 353.
Till B.J., Cooper J., Tai T.H., Colowit P., Greene E.A., Henikoff S., Comai L. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 2007;7:19. doi: 10.1186/1471-2229-7-19. PubMed DOI PMC
Szarejko I., Maluszynski M. Translocations and inversions in barley induced by fast neutrons and N-nitroso-N-methylurea (MNUA)[Mutagenesis] Barley Genet. Newsl. 1980;10:67–69.
Maluszynski M., Szarejko I., Maluszynska J. Encyclopedia of Applied Plant Sciences. Academic Press; New York, NY, USA: 2003. pp. 186–201.
Wienholds E., Van Eeden F., Kosters M., Mudde J., Plasterk R.H., Cuppen E. Efficient target-selected mutagenesis in zebrafish. Genome Res. 2003;13:2700–2707. doi: 10.1101/gr.1725103. PubMed DOI PMC
Wisman E., Koornneef M., Chase T., Lifshytz E., Ramanna M., Zabel P. Genetic and molecular characterization of an Adh-1 null mutant in tomato. Mol. Gen. Genet. MGG. 1991;226:120–128. doi: 10.1007/BF00273595. PubMed DOI
Piron F., Nicolaï M., Minoïa S., Piednoir E., Moretti A., Salgues A., Zamir D., Caranta C., Bendahmane A. An induced mutation in tomato eIF4E leads to immunity to two potyviruses. PLoS ONE. 2010;5:e11313. doi: 10.1371/journal.pone.0011313. PubMed DOI PMC
Kostov K., Batchvarova R., Slavov S. Application of chemical mutagenesis to increase the resistance of tomato to Orobanche ramosa L. Bulg. J. Agric. Sci. 2007;13:505–513.
Mazzucato A., Cellini F., Bouzayen M., Zouine M., Mila I., Minoia S., Petrozza A., Picarella M.E., Ruiu F., Carriero F. A TILLING allele of the tomato Aux/IAA9 gene offers new insights into fruit set mechanisms and perspectives for breeding seedless tomatoes. Mol. Breed. 2015;35:22. doi: 10.1007/s11032-015-0222-8. DOI
Maghuly F., Jankowicz-Cieslak J., Till B.J., Laimer M. Jatropha, Challenges for a New Energy Crop. Springer; New York, NY, USA: 2013. The Use of Ecotilling for the Genetic Improvement of Jatropha curcas L. pp. 335–349.
Maghuly F., Laimer M. The Jatropha Genome. Springer; Cham, Switzerland: 2017. Forward and reverse genetics for the improvement of Jatropha; pp. 131–148.
Greene E.A., Codomo C.A., Taylor N.E., Henikoff J.G., Till B.J., Reynolds S.H., Enns L.C., Burtner C., Johnson J.E., Odden A.R. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics. 2003;164:731–740. PubMed PMC
Till B.J., Reynolds S.H., Weil C., Springer N., Burtner C., Young K., Bowers E., Codomo C.A., Enns L.C., Odden A.R. Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol. 2004;4:12. doi: 10.1186/1471-2229-4-12. PubMed DOI PMC
Caldwell D.G., McCallum N., Shaw P., Muehlbauer G.J., Marshall D.F., Waugh R. A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.) Plant J. 2004;40:143–150. doi: 10.1111/j.1365-313X.2004.02190.x. PubMed DOI
Slade A.J., Fuerstenberg S.I., Loeffler D., Steine M.N., Facciotti D. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat. Biotechnol. 2005;23:75–81. doi: 10.1038/nbt1043. PubMed DOI
Perry J.A., Wang T.L., Welham T.J., Gardner S., Pike J.M., Yoshida S., Parniske M. A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol. 2003;131:866–871. doi: 10.1104/pp.102.017384. PubMed DOI PMC
Marroni F., Pinosio S., Di Centa E., Jurman I., Boerjan W., Felice N., Cattonaro F., Morgante M. Large-scale detection of rare variants via pooled multiplexed next-generation sequencing: Towards next-generation Ecotilling. Plant J. 2011;67:736–745. doi: 10.1111/j.1365-313X.2011.04627.x. PubMed DOI
Rigola D., van Oeveren J., Janssen A., Bonné A., Schneiders H., van der Poel H.J., van Orsouw N.J., Hogers R.C., de Both M.T., van Eijk M.J. High-throughput detection of induced mutations and natural variation using KeyPoint™ technology. PLoS ONE. 2009;4:e4761. doi: 10.1371/journal.pone.0004761. PubMed DOI PMC
Tsai H., Howell T., Nitcher R., Missirian V., Watson B., Ngo K.J., Lieberman M., Fass J., Uauy C., Tran R.K. Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol. 2011;156:1257–1268. doi: 10.1104/pp.110.169748. PubMed DOI PMC
Zhu Q., Smith S.M., Ayele M., Yang L., Jogi A., Chaluvadi S.R., Bennetzen J.L. High-throughput discovery of mutations in tef semi-dwarfing genes by next-generation sequencing analysis. Genetics. 2012;192:819–829. doi: 10.1534/genetics.112.144436. PubMed DOI PMC
Bado S. Ph.D. Thesis. University of Natural Resources and Life Sciences; Vienna, Austria: 2015. Advances in Plant Mutation Breeding.
Sauer N.J., Mozoruk J., Miller R.B., Warburg Z.J., Walker K.A., Beetham P.R., Schöpke C.R., Gocal G.F. Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnol. J. 2016;14:496–502. doi: 10.1111/pbi.12496. PubMed DOI PMC
Gocal G.F., Schöpke C., Beetham P.R. Advances in New Technology for Targeted Modification of Plant Genomes. Springer; New York, NY, USA: 2015. Oligo-mediated targeted gene editing; pp. 73–89.
Cole-Strauss A., Yoon K., Xiang Y., Byrne B.C., Rice M.C., Gryn J., Holloman W.K., Kmiec E.B. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. 1996;273:1386–1389. doi: 10.1126/science.273.5280.1386. PubMed DOI
Yoon K., Cole-Strauss A., Kmiec E.B. Targeted gene correction of episomal DNA in mammalian cells mediated by a chimeric RNA. DNA oligonucleotide. Proc. Natl. Acad. Sci. USA. 1996;93:2071–2076. doi: 10.1073/pnas.93.5.2071. PubMed DOI PMC
Beetham P.R., Kipp P.B., Sawycky X.L., Arntzen C.J., May G.D. A tool for functional plant genomics: Chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc. Natl. Acad. Sci. USA. 1999;96:8774–8778. doi: 10.1073/pnas.96.15.8774. PubMed DOI PMC
Zhu T., Peterson D.J., Tagliani L., Clair G.S., Baszczynski C.L., Bowen B. Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc. Natl. Acad. Sci. USA. 1999;96:8768–8773. doi: 10.1073/pnas.96.15.8768. PubMed DOI PMC
Kochevenko A., Willmitzer L. Chimeric RNA/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate syntase gene. Plant Physiol. 2003;132:174–184. doi: 10.1104/pp.102.016857. PubMed DOI PMC
Okuzaki A., Toriyama K. Chimeric RNA/DNA oligonucleotide-directed gene targeting in rice. Plant Cell Rep. 2004;22:509–512. doi: 10.1007/s00299-003-0698-2. PubMed DOI
Dong C., Beetham P., Vincent K., Sharp P. Oligonucleotide-directed gene repair in wheat using a transient plasmid gene repair assay system. Plant Cell Rep. 2006;25:457–465. doi: 10.1007/s00299-005-0098-x. PubMed DOI
Chinnusamy V., Zhu J.-K. RNA-directed DNA methylation and demethylation in plants. Sci. China Ser. C Life Sci. 2009;52:331–343. doi: 10.1007/s11427-009-0052-1. PubMed DOI PMC
Zhang H., Lang Z., Zhu J.-K. Dynamics and function of DNA methylation in plants. Nat. Rev. Mol. Cell Biol. 2018;19:489–506. doi: 10.1038/s41580-018-0016-z. PubMed DOI
Gallego-Bartolomé J., Liu W., Kuo P.H., Feng S., Ghoshal B., Gardiner J., Zhao J.M.-C., Park S.Y., Chory J., Jacobsen S.E. Co-targeting RNA polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis. Cell. 2019;176:1068–1082.e19. doi: 10.1016/j.cell.2019.01.029. PubMed DOI PMC
Greenberg M.V., Deleris A., Hale C.J., Liu A., Feng S., Jacobsen S.E. Interplay between active chromatin marks and RNA-directed DNA methylation in Arabidopsis thaliana. PLoS Genet. 2013;9:e1003946. doi: 10.1371/journal.pgen.1003946. PubMed DOI PMC
Zhong X., Du J., Hale C.J., Gallego-Bartolome J., Feng S., Vashisht A.A., Chory J., Wohlschlegel J.A., Patel D.J., Jacobsen S.E. Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell. 2014;157:1050–1060. doi: 10.1016/j.cell.2014.03.056. PubMed DOI PMC
Xie M., Yu B. siRNA-directed DNA methylation in plants. Curr. Genom. 2015;16:23–31. doi: 10.2174/1389202915666141128002211. PubMed DOI PMC
Cuerda-Gil D., Slotkin R.K. Non-canonical RNA-directed DNA methylation. Nat. Plants. 2016;2:1–8. doi: 10.1038/nplants.2016.163. PubMed DOI
Haag J.R., Ream T.S., Marasco M., Nicora C.D., Norbeck A.D., Pasa-Tolic L., Pikaard C.S. In vitro transcription activities of Pol IV, Pol V, and RDR2 reveal coupling of Pol IV and RDR2 for dsRNA synthesis in plant RNA silencing. Mol. Cell. 2012;48:811–818. doi: 10.1016/j.molcel.2012.09.027. PubMed DOI PMC
Xie Z., Johansen L.K., Gustafson A.M., Kasschau K.D., Lellis A.D., Zilberman D., Jacobsen S.E., Carrington J.C. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2004;2:e104. doi: 10.1371/journal.pbio.0020104. PubMed DOI PMC
Pikaard C. Cell biology of the Arabidopsis nuclear siRNA pathway for RNA-directed chromatin modification. Cold Spring Harb. Symp. Quant. Biol. 2006;71:473–480. doi: 10.1101/sqb.2006.71.046. PubMed DOI
Brocklehurst S., Watson M., Carr I.M., Out S., Heidmann I., Meyer P. Induction of epigenetic variation in Arabidopsis by over-expression of DNA METHYLTRANSFERASE1 (MET1) PLoS ONE. 2018;13:e0192170. doi: 10.1371/journal.pone.0192170. PubMed DOI PMC
Habu Y. Epigenetic silencing of endogenous repetitive sequences by MORPHEUS’MOLECULE1 in Arabidopsis thaliana. Epigenetics. 2010;5:562–565. doi: 10.4161/epi.5.7.12518. PubMed DOI
Ji L., Jordan W.T., Shi X., Hu L., He C., Schmitz R.J. TET-mediated epimutagenesis of the Arabidopsis thaliana methylome. Nat. Commun. 2018;9:1–9. doi: 10.1038/s41467-018-03289-7. PubMed DOI PMC
Saze H., Kakutani T. Heritable epigenetic mutation of a transposon-flanked Arabidopsis gene due to lack of the chromatin-remodeling factor DDM1. EMBO J. 2007;26:3641–3652. doi: 10.1038/sj.emboj.7601788. PubMed DOI PMC
Slotkin R.K., Vaughn M., Borges F., Tanurdžić M., Becker J.D., Feijó J.A., Martienssen R.A. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell. 2009;136:461–472. doi: 10.1016/j.cell.2008.12.038. PubMed DOI PMC
Otagaki S., Kawai M., Masuta C., Kanazawa A. Size and positional effects of promoter RNA segments on virus-induced RNA-directed DNA methylation and transcriptional gene silencing. Epigenetics. 2011;6:681–691. doi: 10.4161/epi.6.6.16214. PubMed DOI PMC
Li Q., Eichten S.R., Hermanson P.J., Zaunbrecher V.M., Song J., Wendt J., Rosenbaum H., Madzima T.F., Sloan A.E., Huang J. Genetic perturbation of the maize methylome. Plant Cell. 2014;26:4602–4616. doi: 10.1105/tpc.114.133140. PubMed DOI PMC
Kasai A., Bai S., Hojo H., Harada T. Epigenome editing of potato by grafting using transgenic tobacco as siRNA donor. PLoS ONE. 2016;11:e0161729. doi: 10.1371/journal.pone.0161729. PubMed DOI PMC
Hu L., Li N., Xu C., Zhong S., Lin X., Yang J., Zhou T., Yuliang A., Wu Y., Chen Y.-R. Mutation of a major CG methylase in rice causes genome-wide hypomethylation, dysregulated genome expression, and seedling lethality. Proc. Natl. Acad. Sci. USA. 2014;111:10642–10647. doi: 10.1073/pnas.1410761111. PubMed DOI PMC
Manning K., Tör M., Poole M., Hong Y., Thompson A.J., King G.J., Giovannoni J.J., Seymour G.B. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 2006;38:948–952. doi: 10.1038/ng1841. PubMed DOI
Zhong S., Fei Z., Chen Y.-R., Zheng Y., Huang M., Vrebalov J., McQuinn R., Gapper N., Liu B., Xiang J. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat. Biotechnol. 2013;31:154–159. doi: 10.1038/nbt.2462. PubMed DOI
Zhou L., Tian S., Qin G. RNA methylomes reveal the m 6 A-mediated regulation of DNA demethylase gene SlDML2 in tomato fruit ripening. Genome Biol. 2019;20:1–23. doi: 10.1186/s13059-019-1771-7. PubMed DOI PMC
Trewick S.C., Henshaw T.F., Hausinger R.P., Lindahl T., Sedgwick B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature. 2002;419:174–178. doi: 10.1038/nature00908. PubMed DOI
Rossi M., Iusem N.D. Tomato (Lycopersicon esculentum) genomic clone homologous to a gene encoding an abscisic acid-induced protein. Plant Physiol. 1994;104:1073. doi: 10.1104/pp.104.3.1073. PubMed DOI PMC
Frankel N., Hasson E., Iusem N.D., Rossi M.S. Adaptive evolution of the water stress-induced gene Asr2 in Lycopersicon species dwelling in arid habitats. Mol. Biol. Evol. 2003;20:1955–1962. doi: 10.1093/molbev/msg214. PubMed DOI
González R.M., Ricardi M.M., Iusem N.D. Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics. 2013;8:864–872. doi: 10.4161/epi.25524. PubMed DOI PMC
Voinnet O. RNA silencing as a plant immune system against viruses. Trends Genet. 2001;17:449–459. doi: 10.1016/S0168-9525(01)02367-8. PubMed DOI
Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–811. doi: 10.1038/35888. PubMed DOI
Kørner C.J., Pitzalis N., Peña E.J., Erhardt M., Vazquez F., Heinlein M. Crosstalk between PTGS and TGS pathways in natural antiviral immunity and disease recovery. Nat. Plants. 2018;4:157–164. doi: 10.1038/s41477-018-0117-x. PubMed DOI
Sijen T., Vijn I., Rebocho A., van Blokland R., Roelofs D., Mol J.N., Kooter J.M. Transcriptional and posttranscriptional gene silencing are mechanistically related. Curr. Biol. 2001;11:436–440. doi: 10.1016/S0960-9822(01)00116-6. PubMed DOI
Baulcombe D.C., English J.J. Ectopic pairing of homologous DNA and post-transcriptional gene silencing in transgenic plants. Curr. Opin. Biotechnol. 1996;7:173–180. doi: 10.1016/S0958-1669(96)80009-7. DOI
Chuang C.-F., Meyerowitz E.M. Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 2000;97:4985–4990. doi: 10.1073/pnas.060034297. PubMed DOI PMC
Waterhouse P.M., Graham M.W., Wang M.-B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl. Acad. Sci. USA. 1998;95:13959–13964. doi: 10.1073/pnas.95.23.13959. PubMed DOI PMC
Baulcombe D. 100 Years of Virology. Springer; Vienna, Austria: 1999. Viruses and gene silencing in plants; pp. 189–201. PubMed
Burch-Smith T.M., Schiff M., Liu Y., Dinesh-Kumar S.P. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol. 2006;142:21–27. doi: 10.1104/pp.106.084624. PubMed DOI PMC
Lange M., Yellina A.L., Orashakova S., Becker A. Advanced Structural Safety Studies. Volume 975. Springer Science and Business Media LLC.; Berlin/Heidelberg, Germany: 2013. Virus-Induced Gene Silencing (VIGS) in Plants: An Overview of Target Species and the Virus-Derived Vector Systems; pp. 1–14. PubMed
Lu R., Martin-Hernandez A.M., Peart J.R., Malcuit I., Baulcombe D.C. Virus-induced gene silencing in plants. Methods. 2003;30:296–303. doi: 10.1016/S1046-2023(03)00037-9. PubMed DOI
Van Kammen A. Virus-induced gene silencing in infected and transgenic plants. Trends Plant Sci. 1997;2:409–411. doi: 10.1016/S1360-1385(97)01128-X. DOI
Bernstein E., Caudy A.A., Hammond S.M., Hannon G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. 2001;409:363–366. doi: 10.1038/35053110. PubMed DOI
Hutvágner G., Zamore P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297:2056–2060. doi: 10.1126/science.1073827. PubMed DOI
Kawamata T., Tomari Y. Making risc. Trends Biochem. Sci. 2010;35:368–376. doi: 10.1016/j.tibs.2010.03.009. PubMed DOI
Pratt A.J., MacRae I.J. The RNA-induced silencing complex: A versatile gene-silencing machine. J. Biol. Chem. 2009;284:17897–17901. doi: 10.1074/jbc.R900012200. PubMed DOI PMC
Kumagai M.H., Donson J., Della-Cioppa G., Harvey D., Hanley K., Grill L. Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. USA. 1995;92:1679–1683. doi: 10.1073/pnas.92.5.1679. PubMed DOI PMC
Liu Y., Schiff M., Marathe R., Dinesh-Kumar S. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 2002;30:415–429. doi: 10.1046/j.1365-313X.2002.01297.x. PubMed DOI
Ratcliff F., Martin-Hernandez A.M., Baulcombe D.C. Technical advance: Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 2001;25:237–245. doi: 10.1046/j.0960-7412.2000.00942.x. PubMed DOI
Burch-Smith T.M., Anderson J.C., Martin G.B., Dinesh-Kumar S.P. Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J. 2004;39:734–746. doi: 10.1111/j.1365-313X.2004.02158.x. PubMed DOI
Ekengren S.K., Liu Y., Schiff M., Dinesh-Kumar S., Martin G.B. Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J. 2003;36:905–917. doi: 10.1046/j.1365-313X.2003.01944.x. PubMed DOI
Ramegowda V., Mysore K.S., Senthil-Kumar M. Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. Front. Plant Sci. 2014;5:323. doi: 10.3389/fpls.2014.00323. PubMed DOI PMC
McClintock B. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA. 1950;36:344–355. doi: 10.1073/pnas.36.6.344. PubMed DOI PMC
Iida S., Terada R. Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol. Biol. 2005;59:205–219. doi: 10.1007/s11103-005-2162-x. PubMed DOI
Pereira J.F., Ryan P.R. The role of transposable elements in the evolution of aluminium resistance in plants. J. Exp. Bot. 2019;70:41–54. doi: 10.1093/jxb/ery357. PubMed DOI
Flavell A.J., Pearce S.R., Kumar A. Plant transposable elements and the genome. Curr. Opin. Genet. Dev. 1994;4:838–844. doi: 10.1016/0959-437X(94)90068-X. PubMed DOI
Seidl M.F., Thomma B.P. Transposable elements direct the coevolution between plants and microbes. Trends Genet. 2017;33:842–851. doi: 10.1016/j.tig.2017.07.003. PubMed DOI
Gray Y.H. It takes two transposons to tango: Transposable-element-mediated chromosomal rearrangements. Trends Genet. 2000;16:461–468. doi: 10.1016/S0168-9525(00)02104-1. PubMed DOI
Thieme M., Bucher E. Transposable Elements as Tool for Crop Improvement. Adv. Bota. Res. 2018;88:165–202. doi: 10.1016/bs.abr.2018.09.001. DOI
McClintock B. Carnegie Inst. Wash. Year Book. 1948;47:155–169. PubMed
McClintock B. Nobel lecture. The significance of response of the genome to challenge. Science. 1984;226:792–801. doi: 10.1126/science.15739260. PubMed DOI
Ito H., Yoshida T., Tsukahara S., Kawabe A. Evolution of the ONSEN retrotransposon family activated upon heat stress in Brassicaceae. Gene. 2013;518:256–261. doi: 10.1016/j.gene.2013.01.034. PubMed DOI
Wicker T., Sabot F., Hua-Van A., Bennetzen J.L., Capy P., Chalhoub B., Flavell A., Leroy P., Morgante M., Panaud O. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007;8:973–982. doi: 10.1038/nrg2165. PubMed DOI
Grzebelus D. The Functional Impact of Transposable Elements on the Diversity of Plant Genomes. Diversity. 2018;10:18. doi: 10.3390/d10020018. DOI
Sangwan R.S., Ochatt S., Nava-Saucedo J.-E., Sangwan-Norreel B. T-DNA insertion mutagenesis. In: Shu Q.Y., Forster B.P., Nakagawa H., editors. Plant Mutat. Breed. Biotechnol. CABI Publishing; Wallingford, UK: 2012. pp. 489–506.
Belzile F., Yoder J.I. Pattern of somatic transposition in a high copy Ac tomato line. Plant J. 1992;2:173–179. PubMed
Briza J., Carroll B.J., Klimyuk V.I., Thomas C.M., Jones D.A., Jones J. Distribution of unlinked transpositions of a Ds element from a T-DNA locus on tomato chromosome 4. Genetics. 1995;141:383–390. PubMed PMC
Goldsbrough A.P., Lastrella C.N., Yoder J.I. Transposition mediated re–positioning and subsequent elimination of marker genes from transgenic tomato. Bio/technology. 1993;11:1286–1292. doi: 10.1038/nbt1193-1286. DOI
Osborne B.I., Corr C.A., Prince J.P., Hehl R., Tanksley S.D., McCormick S., Baker B. Ac transposition from a T-DNA can generate linked and unlinked clusters of insertions in the tomato genome. Genetics. 1991;129:833–844. PubMed PMC
Peterson P.W., Yoder J.I. Amplification of Ac in tomato is correlated with high Ac transposition activity. Genome. 1995;38:265–276. doi: 10.1139/g95-033. PubMed DOI
Cooley M.B., Yoder J., Goldsbrough A., Still D. Site-selected insertional mutagenesis of tomato with maizeAc andDs elements. Mol. Gen. Genet. MGG. 1996;252:184–194. doi: 10.1007/BF02173219. PubMed DOI
Atarés A., Moyano E., Morales B., Schleicher P., García-Abellán J.O., Antón T., García-Sogo B., Perez-Martin F., Lozano R., Flores F.B. An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii. Plant Cell Rep. 2011;30:1865. doi: 10.1007/s00299-011-1094-y. PubMed DOI PMC
Van der Biezen E.A., Brandwagt B.F., van Leeuwen W., Nijkamp H.J.J., Hille J. Identification and isolation of theFEEBLY gene from tomato by transposon tagging. Mol. Gen. Genet. MGG. 1996;251:267–280. doi: 10.1007/BF02172517. PubMed DOI
Bibikova M., Golic M., Golic K.G., Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 2002;161:1169–1175. PubMed PMC
Osakabe K., Osakabe Y., Toki S. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc. Natl. Acad. Sci. USA. 2010;107:12034–12039. doi: 10.1073/pnas.1000234107. PubMed DOI PMC
Shukla V.K., Doyon Y., Miller J.C., DeKelver R.C., Moehle E.A., Worden S.E., Mitchell J.C., Arnold N.L., Gopalan S., Meng X. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature. 2009;459:437–441. doi: 10.1038/nature07992. PubMed DOI
Persikov A.V., Wetzel J.L., Rowland E.F., Oakes B.L., Xu D.J., Singh M., Noyes M.B. A systematic survey of the Cys2His2 zinc finger DNA-binding landscape. Nucleic Acids Res. 2015;43:1965–1984. doi: 10.1093/nar/gku1395. PubMed DOI PMC
Bitinaite J., Wah D.A., Aggarwal A.K., Schildkraut I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA. 1998;95:10570–10575. doi: 10.1073/pnas.95.18.10570. PubMed DOI PMC
Hiroyuki S., Susumu K. New restriction endonucleases from Flavobacterium okeanokoites (FokI) and Micrococcus luteus (MluI) Gene. 1981;16:73–78. doi: 10.1016/0378-1119(81)90062-7. PubMed DOI
Carroll D. Genome engineering with zinc-finger nucleases. Genetics. 2011;188:773–782. doi: 10.1534/genetics.111.131433. PubMed DOI PMC
Petolino J.F. Genome editing in plants via designed zinc finger nucleases. Vitr. Cell. Dev. Biol. Plant. 2015;51:1–8. doi: 10.1007/s11627-015-9663-3. PubMed DOI PMC
Mohanta T.K., Bashir T., Hashem A., Abd_Allah E.F., Bae H. Genome editing tools in plants. Genes. 2017;8:399. doi: 10.3390/genes8120399. PubMed DOI PMC
Kim Y.-G., Cha J., Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA. 1996;93:1156–1160. doi: 10.1073/pnas.93.3.1156. PubMed DOI PMC
Townsend J.A., Wright D.A., Winfrey R.J., Fu F., Maeder M.L., Joung J.K., Voytas D.F. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature. 2009;459:442–445. doi: 10.1038/nature07845. PubMed DOI PMC
Zhang F., Maeder M.L., Unger-Wallace E., Hoshaw J.P., Reyon D., Christian M., Li X., Pierick C.J., Dobbs D., Peterson T. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc. Natl. Acad. Sci. USA. 2010;107:12028–12033. doi: 10.1073/pnas.0914991107. PubMed DOI PMC
Curtin S.J., Zhang F., Sander J.D., Haun W.J., Starker C., Baltes N.J., Reyon D., Dahlborg E.J., Goodwin M.J., Coffman A.P. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol. 2011;156:466–473. doi: 10.1104/pp.111.172981. PubMed DOI PMC
Mushtaq M., Bhat J.A., Mir Z.A., Sakina A., Ali S., Singh A.K., Tyagi A., Salgotra R.K., Dar A.A., Bhat R. CRISPR/Cas approach: A new way of looking at plant-abiotic interactions. J. Plant Physiol. 2018;224:156–162. doi: 10.1016/j.jplph.2018.04.001. PubMed DOI
Gaj T., Sirk S.J., Shui S.-l., Liu J. Genome-editing technologies: Principles and applications. Cold Spring Harb. Perspect. Biol. 2016;8:a023754. doi: 10.1101/cshperspect.a023754. PubMed DOI PMC
Gupta R.M., Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J. Clin. Investig. 2014;124:4154–4161. doi: 10.1172/JCI72992. PubMed DOI PMC
Ramirez C.L., Foley J.E., Wright D.A., Müller-Lerch F., Rahman S.H., Cornu T.I., Winfrey R.J., Sander J.D., Fu F., Townsend J.A. Unexpected failure rates for modular assembly of engineered zinc fingers. Nat. Methods. 2008;5:374–375. doi: 10.1038/nmeth0508-374. PubMed DOI PMC
Sun N., Zhao H. Transcription activator-like effector nucleases (TALENs): A highly efficient and versatile tool for genome editing. Biotechnol. Bioeng. 2013;110:1811–1821. doi: 10.1002/bit.24890. PubMed DOI
Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., Lahaye T., Nickstadt A., Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509–1512. doi: 10.1126/science.1178811. PubMed DOI
Moscou M.J., Bogdanove A.J. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326:1501. doi: 10.1126/science.1178817. PubMed DOI
Christian M., Cermak T., Doyle E.L., Schmidt C., Zhang F., Hummel A., Bogdanove A.J., Voytas D.F. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 2010;186:757–761. doi: 10.1534/genetics.110.120717. PubMed DOI PMC
Ding Q., Regan S.N., Xia Y., Oostrom L.A., Cowan C.A., Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell. 2013;12:393. doi: 10.1016/j.stem.2013.03.006. PubMed DOI PMC
Mussolino C., Morbitzer R., Lütge F., Dannemann N., Lahaye T., Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39:9283–9293. doi: 10.1093/nar/gkr597. PubMed DOI PMC
Reyon D., Tsai S.Q., Khayter C., Foden J.A., Sander J.D., Joung J.K. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 2012;30:460. doi: 10.1038/nbt.2170. PubMed DOI PMC
Cermak T., Doyle E.L., Christian M., Wang L., Zhang Y., Schmidt C., Baller J.A., Somia N.V., Bogdanove A.J., Voytas D.F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39:e82. doi: 10.1093/nar/gkr218. PubMed DOI PMC
Christian M., Qi Y., Zhang Y., Voytas D.F. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3 Genes Genomes Genet. 2013;3:1697–1705. PubMed PMC
Mahfouz M.M., Li L., Shamimuzzaman M., Wibowo A., Fang X., Zhu J.-K. De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc. Natl. Acad. Sci. USA. 2011;108:2623–2628. doi: 10.1073/pnas.1019533108. PubMed DOI PMC
Zhang Y., Zhang F., Li X., Baller J.A., Qi Y., Starker C.G., Bogdanove A.J., Voytas D.F. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 2013;161:20–27. doi: 10.1104/pp.112.205179. PubMed DOI PMC
Li T., Liu B., Spalding M.H., Weeks D.P., Yang B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 2012;30:390. doi: 10.1038/nbt.2199. PubMed DOI
Shah S.A., Erdmann S., Mojica F.J., Garrett R.A. Protospacer recognition motifs: Mixed identities and functional diversity. RNA Biol. 2013;10:891–899. doi: 10.4161/rna.23764. PubMed DOI PMC
Wendt T., Holm P.B., Starker C.G., Christian M., Voytas D.F., Brinch-Pedersen H., Holme I.B. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol. Biol. 2013;83:279–285. doi: 10.1007/s11103-013-0078-4. PubMed DOI PMC
Shan Q., Wang Y., Chen K., Liang Z., Li J., Zhang Y., Zhang K., Liu J., Voytas D.F., Zheng X. Rapid and efficient gene modification in rice and Brachypodium using TALENs. Mol. Plant. 2013;6:1365–1368. doi: 10.1093/mp/sss162. PubMed DOI PMC
Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829. PubMed DOI PMC
Wang J., Li J., Zhao H., Sheng G., Wang M., Yin M., Wang Y. Structural and mechanistic basis of PAM-dependent spacer acquisition in CRISPR-Cas systems. Cell. 2015;163:840–853. doi: 10.1016/j.cell.2015.10.008. PubMed DOI
Pennisi E. The CRISPR craze. Science. 2013;341:833–836. doi: 10.1126/science.341.6148.833. PubMed DOI
Segal D.J., Meckler J.F. Genome engineering at the dawn of the golden age. Annu. Rev. Genom. Hum. Genet. 2013;14:135–158. doi: 10.1146/annurev-genom-091212-153435. PubMed DOI
Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D.A., Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315:1709–1712. doi: 10.1126/science.1138140. PubMed DOI
Horvath P., Barrangou R. CRISPR/Cas, the immune system of bacteria and archaea. Science. 2010;327:167–170. doi: 10.1126/science.1179555. PubMed DOI
Jinek M., Jiang F., Taylor D.W., Sternberg S.H., Kaya E., Ma E., Anders C., Hauer M., Zhou K., Lin S. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014;343:1247997. doi: 10.1126/science.1247997. PubMed DOI PMC
Belhaj K., Chaparro-Garcia A., Kamoun S., Patron N.J., Nekrasov V. Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 2015;32:76–84. doi: 10.1016/j.copbio.2014.11.007. PubMed DOI
Dagdas Y.S., Chen J.S., Sternberg S.H., Doudna J.A., Yildiz A. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Sci. Adv. 2017;3:eaao0027. doi: 10.1126/sciadv.aao0027. PubMed DOI PMC
Jiang F., Doudna J.A. CRISPR–Cas9 structures and mechanisms. Annu. Rev. Biophys. 2017;46:505–529. doi: 10.1146/annurev-biophys-062215-010822. PubMed DOI
Koonin E.V., Makarova K.S., Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr. Opin. Microbiol. 2017;37:67–78. doi: 10.1016/j.mib.2017.05.008. PubMed DOI PMC
Chen K., Wang Y., Zhang R., Zhang H., Gao C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 2019;70:667–697. doi: 10.1146/annurev-arplant-050718-100049. PubMed DOI
Knott G.J., Doudna J.A. CRISPR-Cas guides the future of genetic engineering. Science. 2018;361:866–869. doi: 10.1126/science.aat5011. PubMed DOI PMC
Freudhofmaier M. Master’s Thesis. University of Natural Resources and Life Sciences (BOKU); Vienna, Austria: 2018. Gene Editing of Commercially Important Genes of Jatropha curcas L. CRISPR/Cas9 Mediated Gene Knock-Out.
Peterson B.A., Haak D.C., Nishimura M.T., Teixeira P.J., James S.R., Dangl J.L., Nimchuk Z.L. Genome-wide assessment of efficiency and specificity in CRISPR/Cas9 mediated multiple site targeting in Arabidopsis. PLoS ONE. 2016;11:e0162169. doi: 10.1371/journal.pone.0162169. PubMed DOI PMC
Mali P., Esvelt K.M., Church G.M. Cas9 as a versatile tool for engineering biology. Nat. Methods. 2013;10:957–963. doi: 10.1038/nmeth.2649. PubMed DOI PMC
Mojica F.J., Díez-Villaseñor C., García-Martínez J., Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology. 2009;155:733–740. doi: 10.1099/mic.0.023960-0. PubMed DOI
Karvelis T., Gasiunas G., Young J., Bigelyte G., Silanskas A., Cigan M., Siksnys V. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol. 2015;16:1–13. doi: 10.1186/s13059-015-0818-7. PubMed DOI PMC
Lee C.M., Cradick T.J., Bao G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol. Ther. 2016;24:645–654. doi: 10.1038/mt.2016.8. PubMed DOI PMC
Müller M., Lee C.M., Gasiunas G., Davis T.H., Cradick T.J., Siksnys V., Bao G., Cathomen T., Mussolino C. Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol. Ther. 2016;24:636–644. doi: 10.1038/mt.2015.218. PubMed DOI PMC
Ran F.A., Cong L., Yan W.X., Scott D.A., Gootenberg J.S., Kriz A.J., Zetsche B., Shalem O., Wu X., Makarova K.S. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–191. doi: 10.1038/nature14299. PubMed DOI PMC
Abudayyeh O.O., Gootenberg J.S., Konermann S., Joung J., Slaymaker I.M., Cox D.B., Shmakov S., Makarova K.S., Semenova E., Minakhin L. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353:aaf5573. doi: 10.1126/science.aaf5573. PubMed DOI PMC
East-Seletsky A., O’Connell M.R., Knight S.C., Burstein D., Cate J.H., Tjian R., Doudna J.A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature. 2016;538:270–273. doi: 10.1038/nature19802. PubMed DOI PMC
Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., Venkataraman G. CRISPR for crop improvement: An update review. Front. Plant Sci. 2018;9:985. doi: 10.3389/fpls.2018.00985. PubMed DOI PMC
Damalas C.A., Eleftherohorinos I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health. 2011;8:1402–1419. doi: 10.3390/ijerph8051402. PubMed DOI PMC
Tilman D., Cassman K.G., Matson P.A., Naylor R., Polasky S. Agricultural sustainability and intensive production practices. Nature. 2002;418:671–677. doi: 10.1038/nature01014. PubMed DOI
Dunwell J.M. Transgenic approaches to crop improvement. J. Exp. Bot. 2000;51:487–496. doi: 10.1093/jexbot/51.suppl_1.487. PubMed DOI
Yin K., Qiu J.-L. Genome editing for plant disease resistance: Applications and perspectives. Philos. Trans. R. Soc. B. 2019;374:20180322. doi: 10.1098/rstb.2018.0322. PubMed DOI PMC
Buxdorf K., Rubinsky G., Barda O., Burdman S., Aharoni A., Levy M. The transcription factor SlSHINE3 modulates defense responses in tomato plants. Plant Mol. Biol. 2014;84:37–47. doi: 10.1007/s11103-013-0117-1. PubMed DOI
Yang L., Huang W., Xiong F., Xian Z., Su D., Ren M., Li Z. Silencing of Sl PL, which encodes a pectate lyase in tomato, confers enhanced fruit firmness, prolonged shelf-life and reduced susceptibility to grey mould. Plant Biotechnol. J. 2017;15:1544–1555. doi: 10.1111/pbi.12737. PubMed DOI PMC
Ye J., Liu G., Chen W., Zhang F., Li H., Ye Z., Zhang Y. Knockdown of SlNL33 accumulates ascorbate, enhances disease and oxidative stress tolerance in tomato (Solanum lycopersicum) Plant Growth Regul. 2019;89:49–58. doi: 10.1007/s10725-019-00512-3. DOI
Di Pietro A., García-Maceira F.I., Méglecz E., Roncero M.I.G. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol. Microbiol. 2001;39:1140–1152. doi: 10.1111/j.1365-2958.2001.02307.x. PubMed DOI
Pareek M., Rajam M.V. RNAi-mediated silencing of MAP kinase signalling genes (Fmk1, Hog1, and Pbs2) in Fusarium oxysporum reduces pathogenesis on tomato plants. Fungal Biol. 2017;121:775–784. doi: 10.1016/j.funbio.2017.05.005. PubMed DOI
Zhang S., Wang L., Zhao R., Yu W., Li R., Li Y., Sheng J., Shen L. Knockout of SlMAPK3 reduced disease resistance to Botrytis cinerea in tomato plants. J. Agric. Food Chem. 2018;66:8949–8956. doi: 10.1021/acs.jafc.8b02191. PubMed DOI
Prihatna C., Barbetti M.J., Barker S.J. A novel tomato fusarium wilt tolerance gene. Front. Microbiol. 2018;9:1226. doi: 10.3389/fmicb.2018.01226. PubMed DOI PMC
Nekrasov V., Wang C., Win J., Lanz C., Weigel D., Kamoun S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 2017;7:1–6. doi: 10.1038/s41598-017-00578-x. PubMed DOI PMC
Koseoglou E. Master’s Thesis. Wageningen University and Research; Wageningen, The Netherlands: 2017. The Study of SlPMR4 CRISPR/Cas9-Mediated Tomato Allelic Series for Resistance Against Powdery Mildew.
Huibers R.P., Loonen A.E., Gao D., Van den Ackerveken G., Visser R.G., Bai Y. Powdery mildew resistance in tomato by impairment of SlPMR4 and SlDMR1. PLoS ONE. 2013;8:e67467. doi: 10.1371/journal.pone.0067467. PubMed DOI PMC
Tashkandi M., Ali Z., Aljedaani F., Shami A., Mahfouz M.M. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal. Behav. 2018;13:e1525996. doi: 10.1080/15592324.2018.1525996. PubMed DOI PMC
Fuentes A., Ramos P.L., Fiallo E., Callard D., Sánchez Y., Peral R., Rodríguez R., Pujol M. Intron–hairpin RNA derived from replication associated protein C1 gene confers immunity to Tomato yellow leaf curl virus infection in transgenic tomato plants. Transgenic Res. 2006;15:291–304. doi: 10.1007/s11248-005-5238-0. PubMed DOI
Ramesh S., Mishra A., Praveen S. Hairpin RNA-mediated strategies for silencing of tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides. 2007;17:251–257. doi: 10.1089/oli.2006.0063. PubMed DOI
Praveen S., Mishra A.K., Dasgupta A. Antisense suppression of replicase gene expression recovers tomato plants from leaf curl virus infection. Plant Sci. 2005;168:1011–1014. doi: 10.1016/j.plantsci.2004.12.008. DOI
Ortigosa A., Gimenez-Ibanez S., Leonhardt N., Solano R. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of Sl JAZ 2. Plant Biotechnol. J. 2019;17:665–673. doi: 10.1111/pbi.13006. PubMed DOI PMC
Almirón M., Link A.J., Furlong D., Kolter R. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 1992;6:2646–2654. doi: 10.1101/gad.6.12b.2646. PubMed DOI
Ceci P., Ilari A., Falvo E., Chiancone E. The Dps Protein of Agrobacterium tumefaciens Does Not Bind to DNA but Protects It toward Oxidative Cleavage X-RAY crystal structure, iron binding, and hydroxyl-radical scavenging properties. J. Biol. Chem. 2003;278:20319–20326. doi: 10.1074/jbc.M302114200. PubMed DOI
Choi S.H., Baumler D.J., Kaspar C.W. Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157: H7. Appl. Environ. Microbiol. 2000;66:3911–3916. doi: 10.1128/AEM.66.9.3911-3916.2000. PubMed DOI PMC
Halsey T.A., Vazquez-Torres A., Gravdahl D.J., Fang F.C., Libby S.J. The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect. Immun. 2004;72:1155–1158. doi: 10.1128/IAI.72.2.1155-1158.2004. PubMed DOI PMC
Martinez A., Kolter R. Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J. Bacteriol. 1997;179:5188–5194. doi: 10.1128/JB.179.16.5188-5194.1997. PubMed DOI PMC
Nair S., Finkel S.E. Dps protects cells against multiple stresses during stationary phase. J. Bacteriol. 2004;186:4192–4198. doi: 10.1128/JB.186.13.4192-4198.2004. PubMed DOI PMC
Saumaa S., Tover A., Tark M., Tegova R., Kivisaar M. Oxidative DNA damage defense systems in avoidance of stationary-phase mutagenesis in Pseudomonas putida. J. Bacteriol. 2007;189:5504–5514. doi: 10.1128/JB.00518-07. PubMed DOI PMC
Colburn-Clifford J.M., Scherf J.M., Allen C. Ralstonia solanacearum Dps contributes to oxidative stress tolerance and to colonization of and virulence on tomato plants. Appl. Environ. Microbiol. 2010;76:7392–7399. doi: 10.1128/AEM.01742-10. PubMed DOI PMC
Hu T., Ye J., Tao P., Li H., Zhang J., Zhang Y., Ye Z. The tomato HD-Zip I transcription factor Sl HZ 24 modulates ascorbate accumulation through positive regulation of the d-mannose/l-galactose pathway. Plant J. 2016;85:16–29. doi: 10.1111/tpj.13085. PubMed DOI
De Toledo Thomazella D.P., Brail Q., Dahlbeck D., Staskawicz B. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. BioRxiv. 2016:064824. doi: 10.1101/064824. PubMed DOI PMC
Shu P., Li Z., Min D., Zhang X., Ai W., Li J., Zhou J., Li Z., Li F., Li X. CRISPR/Cas9-Mediated SlMYC2 Mutagenesis Adverse to Tomato Plant Growth and MeJA-Induced Fruit Resistance to Botrytis cinerea. J. Agric. Food Chem. 2020;68:5529–5538. doi: 10.1021/acs.jafc.9b08069. PubMed DOI
Liu L., Zhang J., Xu J., Li Y., Guo L., Wang Z., Zhang X., Zhao B., Guo Y.-D., Zhang N. CRISPR/Cas9 targeted mutagenesis of SlLBD40, a Lateral Organ Boundaries Domain transcription factor, enhances drought tolerance in tomato. Plant Sci. 2020;301:110683. doi: 10.1016/j.plantsci.2020.110683. PubMed DOI
Martínez M.I.S., Bracuto V., Koseoglou E., Appiano M., Jacobsen E., Visser R.G., Wolters A.-M.A., Bai Y. CRISPR/Cas9-targeted mutagenesis of the tomato susceptibility gene PMR4 for resistance against powdery mildew. BMC Plant Biol. 2020;20:284. PubMed PMC
Song L.X., Xu X.C., Wang F.N., Wang Y., Xia X.J., Shi K., Zhou Y.H., Zhou J., Yu J.Q. Brassinosteroids act as a positive regulator for resistance against root-knot nematode involving RESPIRATORY BURST OXIDASE HOMOLOG-dependent activation of MAPKs in tomato. Plant Cell Environ. 2018;41:1113–1125. doi: 10.1111/pce.12952. PubMed DOI
Reddy K., Rajam M. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol. Biol. 2016;90:281–292. PubMed
Wang T., Deng Z., Zhang X., Wang H., Wang Y., Liu X., Liu S., Xu F., Li T., Fu D. Tomato DCL2b is required for the biosynthesis of 22-nt small RNAs, the resulting secondary siRNAs, and the host defense against ToMV. Hortic. Res. 2018;5:1–14. doi: 10.1038/s41438-018-0073-7. PubMed DOI PMC
Wang Z., Hardcastle T.J., Pastor A.C., Yip W.H., Tang S., Baulcombe D.C. A novel DCL2-dependent miRNA pathway in tomato affects susceptibility to RNA viruses. Genes Dev. 2018;32:1155–1160. doi: 10.1101/gad.313601.118. PubMed DOI PMC
Schwind N., Zwiebel M., Itaya A., Ding B., WANG M.B., Krczal G., Wassenegger M. RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Mol. Plant Pathol. 2009;10:459–469. doi: 10.1111/j.1364-3703.2009.00546.x. PubMed DOI PMC
Li Y., Qin L., Zhao J., Muhammad T., Cao H., Li H., Zhang Y., Liang Y. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum) PLoS ONE. 2017;12:e0172466. doi: 10.1371/journal.pone.0172466. PubMed DOI PMC
Srivastava R., Kumar R. The expanding roles of APETALA2/Ethylene Responsive Factors and their potential applications in crop improvement. Brief. Funct. Genom. 2019;18:240–254. doi: 10.1093/bfgp/elz001. PubMed DOI
Fowler S., Thomashow M.F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell. 2002;14:1675–1690. doi: 10.1105/tpc.003483. PubMed DOI PMC
Zhang Z., Zhang H., Quan R., Wang X.-C., Huang R. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco. Plant Physiol. 2009;150:365–377. doi: 10.1104/pp.109.135830. PubMed DOI PMC
Zhang Z., Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis. Plant Mol. Biol. 2010;73:241–249. doi: 10.1007/s11103-010-9609-4. PubMed DOI
Jang J.-C., Sheen J. Sugar sensing in higher plants. Plant Cell. 1994;6:1665–1679. PubMed PMC
Rolland F., Baena-Gonzalez E., Sheen J. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu. Rev. Plant Biol. 2006;57:675–709. doi: 10.1146/annurev.arplant.57.032905.105441. PubMed DOI
Smeekens S. Sugar-induced signal transduction in plants. Annu. Rev. Plant Biol. 2000;51:49–81. doi: 10.1146/annurev.arplant.51.1.49. PubMed DOI
Smeekens S., Rook F. Sugar sensing and sugar-mediated signal transduction in plants. Plant Physiol. 1997;115:7. doi: 10.1104/pp.115.1.7. PubMed DOI PMC
Xu X.-X., Hu Q., Yang W.-N., Jin Y. The roles of cell wall invertase inhibitor in regulating chilling tolerance in tomato. BMC Plant Biol. 2017;17:195. doi: 10.1186/s12870-017-1145-9. PubMed DOI PMC
Cai B., Li Q., Xu Y., Yang L., Bi H., Ai X. Genome-wide analysis of the fructose 1, 6-bisphosphate aldolase (FBA) gene family and functional characterization of FBA7 in tomato. Plant Physiol. Biochem. 2016;108:251–265. doi: 10.1016/j.plaphy.2016.07.019. PubMed DOI
Michelis R., Gepstein S. Identification and characterization of a heat-induced isoform of aldolase in oat chloroplast. Plant Mol. Biol. 2000;44:487–498. doi: 10.1023/A:1026528319769. PubMed DOI
Purev M., Kim M.K., Samdan N., Yang D.-C. Isolation of a novel fructose-1, 6-bisphosphate aldolase gene from Codonopsis lanceolata and analysis of the response of this gene to abiotic stresses. Mol. Biol. 2008;42:179. doi: 10.1134/S0026893308020027. PubMed DOI
Cai B., Li Q., Liu F., Bi H., Ai X. Decreasing fructose-1, 6-bisphosphate aldolase activity reduces plant growth and tolerance to chilling stress in tomato seedlings. Physiol. Plant. 2018;163:247–258. doi: 10.1111/ppl.12682. PubMed DOI
Tubiello F.N., Soussana J.-F., Howden S.M. Crop and pasture response to climate change. Proc. Natl. Acad. Sci. USA. 2007;104:19686–19690. doi: 10.1073/pnas.0701728104. PubMed DOI PMC
Link V., Sinha A.K., Vashista P., Hofmann M.G., Proels R.K., Ehness R., Roitsch T. A heat-activated MAP kinase in tomato: A possible regulator of the heat stress response. FEBS Lett. 2002;531:179–183. doi: 10.1016/S0014-5793(02)03498-1. PubMed DOI
Evrard A., Kumar M., Lecourieux D., Lucks J., von Koskull-Döring P., Hirt H. Regulation of the heat stress response in Arabidopsis by MPK6-targeted phosphorylation of the heat stress factor HsfA2. PeerJ. 2013;1:e59. doi: 10.7717/peerj.59. PubMed DOI PMC
Ding H., He J., Wu Y., Wu X., Ge C., Wang Y., Zhong S., Peiter E., Liang J., Xu W. The tomato mitogen-activated protein kinase slmpk1 is as a negative regulator of the high-temperature stress response. Plant Physiol. 2018;177:633–651. doi: 10.1104/pp.18.00067. PubMed DOI PMC
Mishra S.K., Tripp J., Winkelhaus S., Tschiersch B., Theres K., Nover L., Scharf K.-D. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 2002;16:1555–1567. doi: 10.1101/gad.228802. PubMed DOI PMC
Liu D., Kumar R., Claus L.A., Johnson A.J., Siao W., Vanhoutte I., Wang P., Bender K.W., Yperman K., Martins S. Endocytosis of BRASSINOSTEROID INSENSITIVE1 Is Partly Driven by a Canonical Tyr-Based Motif. Plant Cell. 2020;32:3598–3612. doi: 10.1105/tpc.20.00384. PubMed DOI PMC
Divi U.K., Krishna P. Brassinosteroid: A biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol. 2009;26:131–136. doi: 10.1016/j.nbt.2009.07.006. PubMed DOI
Kagale S., Divi U.K., Krochko J.E., Keller W.A., Krishna P. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta. 2007;225:353–364. doi: 10.1007/s00425-006-0361-6. PubMed DOI
Nakashita H., Yasuda M., Nitta T., Asami T., Fujioka S., Arai Y., Sekimata K., Takatsuto S., Yamaguchi I., Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 2003;33:887–898. doi: 10.1046/j.1365-313X.2003.01675.x. PubMed DOI
Yin Y., Qin K., Song X., Zhang Q., Zhou Y., Xia X., Yu J. BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant Cell Physiol. 2018;59:2239–2254. doi: 10.1093/pcp/pcy146. PubMed DOI
Priest D.M., Ambrose S.J., Vaistij F.E., Elias L., Higgins G.S., Ross A.R., Abrams S.R., Bowles D.J. Use of the glucosyltransferase UGT71B6 to disturb abscisic acid homeostasis in Arabidopsis thaliana. Plant J. 2006;46:492–502. doi: 10.1111/j.1365-313X.2006.02701.x. PubMed DOI
Sun Y., Ji K., Liang B., Du Y., Jiang L., Wang J., Kai W., Zhang Y., Zhai X., Chen P. Suppressing ABA uridine diphosphate glucosyltransferase (Sl UGT 75C1) alters fruit ripening and the stress response in tomato. Plant J. 2017;91:574–589. doi: 10.1111/tpj.13588. PubMed DOI
Jakoby M., Weisshaar B., Dröge-Laser W., Vicente-Carbajosa J., Tiedemann J., Kroj T., Parcy F. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 2002;7:106–111. doi: 10.1016/S1360-1385(01)02223-3. PubMed DOI
Umezawa T., Nakashima K., Miyakawa T., Kuromori T., Tanokura M., Shinozaki K., Yamaguchi-Shinozaki K. Molecular basis of the core regulatory network in ABA responses: Sensing, signaling and transport. Plant Cell Physiol. 2010;51:1821–1839. doi: 10.1093/pcp/pcq156. PubMed DOI PMC
Zhu M., Meng X., Cai J., Li G., Dong T., Li Z. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol. 2018;18:83. doi: 10.1186/s12870-018-1299-0. PubMed DOI PMC
Guo X., Chen G., Naeem M., Yu X., Tang B., Li A., Hu Z. The MADS-box gene SlMBP11 regulates plant architecture and affects reproductive development in tomato plants. Plant Sci. 2017;258:90–101. doi: 10.1016/j.plantsci.2017.02.005. PubMed DOI
Yin W., Hu Z., Cui B., Guo X., Hu J., Zhu Z., Chen G. Suppression of the MADS-box gene SlMBP8 accelerates fruit ripening of tomato (Solanum lycopersicum) Plant Physiol. Biochem. 2017;118:235–244. doi: 10.1016/j.plaphy.2017.06.019. PubMed DOI
Li Y., Chu Z., Luo J., Zhou Y., Cai Y., Lu Y., Xia J., Kuang H., Ye Z., Ouyang B. The C2H2 zinc-finger protein Sl ZF 3 regulates AsA synthesis and salt tolerance by interacting with CSN 5B. Plant Biotechnol. J. 2018;16:1201–1213. doi: 10.1111/pbi.12863. PubMed DOI PMC
Bao H., Chen X., Lv S., Jiang P., Feng J., Fan P., Nie L., Li Y. Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato by γ-aminobutyric acid metabolic pathway. Plantcell Environ. 2015;38:600–613. doi: 10.1111/pce.12419. PubMed DOI
Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 2002;66:300–372. doi: 10.1128/MMBR.66.2.300-372.2002. PubMed DOI PMC
Sharma P., Jha A.B., Dubey R.S., Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012;2012 doi: 10.1155/2012/217037. DOI
Yang Y., Tang N., Xian Z., Li Z. Two SnRK2 protein kinases genes play a negative regulatory role in the osmotic stress response in tomato. Plant Cell Tissue Organ Cult. PCTOC. 2015;122:421–434. doi: 10.1007/s11240-015-0779-2. DOI
Borsani O., Cuartero J., Valpuesta V., Botella M.A. Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid sensitivity. Plant J. 2002;32:905–914. doi: 10.1046/j.1365-313X.2002.01475.x. PubMed DOI
Li R., Zhang L., Wang L., Chen L., Zhao R., Sheng J., Shen L. Reduction of tomato-plant chilling tolerance by CRISPR–Cas9-mediated SlCBF1 mutagenesis. J. Agric. Food Chem. 2018;66:9042–9051. doi: 10.1021/acs.jafc.8b02177. PubMed DOI
Hu T., Wang Y., Wang Q., Dang N., Wang L., Liu C., Zhu J., Zhan X. The tomato 2-oxoglutarate-dependent dioxygenase gene SlF3HL is critical for chilling stress tolerance. Hortic. Res. 2019;6:1–12. doi: 10.1038/s41438-019-0127-5. PubMed DOI PMC
Zhang L., Guo X., Qin Y., Feng B., Wu Y., He Y., Wang A., Zhu J. The chilling tolerance divergence 1 protein confers cold stress tolerance in processing tomato. Plant Physiol. Biochem. 2020;151:34–46. doi: 10.1016/j.plaphy.2020.03.007. PubMed DOI
Zhuang K., Kong F., Zhang S., Meng C., Yang M., Liu Z., Wang Y., Ma N., Meng Q. Whirly1 enhances tolerance to chilling stress in tomato via protection of photosystem II and regulation of starch degradation. New Phytol. 2019;221:1998–2012. doi: 10.1111/nph.15532. PubMed DOI
Zhuang K., Wang J., Jiao B., Chen C., Zhang J., Ma N., Meng Q. SlWHIRLY1 maintains leaf photosynthetic capacity in tomato by regulating the expression of SlRbcS1 under chilling stress. J. Exp. Bot. 2020;71:3653–3663. doi: 10.1093/jxb/eraa145. PubMed DOI
Liu Y., Shi Y., Zhu N., Zhong S., Bouzayen M., Li Z. SlGRAS4 mediates a novel regulatory pathway promoting chilling tolerance in tomato. Plant Biotechnol. J. 2020;18:1620–1633. doi: 10.1111/pbi.13328. PubMed DOI PMC
Li H., Jiang X., Lv X., Ahammed G.J., Guo Z., Qi Z., Yu J., Zhou Y. Tomato GLR3. 3 and GLR3. 5 mediate cold acclimation-induced chilling tolerance by regulating apoplastic H2O2 production and redox homeostasis. Plantcell Environ. 2019;42:3326–3339. PubMed
Guo X., Li J., Zhang L., Zhang Z., He P., Wang W., Wang M., Wang A., Zhu J. Heterotrimeric G-protein α subunit (LeGPA1) confers cold stress tolerance to processing tomato plants (Lycopersicon esculentum Mill) BMC Plant Biol. 2020;20:394. doi: 10.1186/s12870-020-02615-w. PubMed DOI PMC
Wang L., Chen L., Li R., Zhao R., Yang M., Sheng J., Shen L. Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. J. Agric. Food Chem. 2017;65:8674–8682. doi: 10.1021/acs.jafc.7b02745. PubMed DOI
Li R., Liu C., Zhao R., Wang L., Chen L., Yu W., Zhang S., Sheng J., Shen L. CRISPR/Cas9-Mediated SlNPR1 mutagenesis reduces tomato plant drought tolerance. BMC Plant Biol. 2019;19:38. PubMed PMC
Zhang Y., Li H., Shu W., Zhang C., Zhang W., Ye Z. Suppressed expression of ascorbate oxidase gene promotes ascorbic acid accumulation in tomato fruit. Plant Mol. Biol. Report. 2011;29:638–645. doi: 10.1007/s11105-010-0271-4. DOI
Ewas M., Gao Y., Wang S., Liu X., Zhang H., Nishawy E.M., Ali F., Shahzad R., Ziaf K., Subthain H. Manipulation of SlMXl for enhanced carotenoids accumulation and drought resistance in tomato. Sci. Bull. 2016;61:1413–1418. doi: 10.1007/s11434-016-1108-9. DOI
Song J., Xing Y., Munir S., Yu C., Song L., Li H., Wang T., Ye Z. An ATL78-Like RING-H2 finger protein confers abiotic stress tolerance through interacting with RAV2 and CSN5B in tomato. Front. Plant Sci. 2016;7:1305. doi: 10.3389/fpls.2016.01305. PubMed DOI PMC
Zhang Y., Li Q., Jiang L., Kai W., Liang B., Wang J., Du Y., Zhai X., Wang J., Zhang Y. Suppressing type 2C protein phosphatases alters fruit ripening and the stress response in tomato. Plant Cell Physiol. 2018;59:142–154. doi: 10.1093/pcp/pcx169. PubMed DOI
Zhu T., Zou L., Li Y., Yao X., Xu F., Deng X., Zhang D., Lin H. Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum. Plant Biotechnol. J. 2018;16:2063–2076. doi: 10.1111/pbi.12939. PubMed DOI PMC
Li J., Chen C., Wei J., Pan Y., Su C., Zhang X. SpPKE1, a Multiple Stress-Responsive Gene Confers Salt Tolerance in Tomato and Tobacco. Int. J. Mol. Sci. 2019;20:2478. doi: 10.3390/ijms20102478. PubMed DOI PMC
Thirumalaikumar V.P., Devkar V., Mehterov N., Ali S., Ozgur R., Turkan I., Mueller-Roeber B., Balazadeh S. NAC transcription factor JUNGBRUNNEN 1 enhances drought tolerance in tomato. Plant Biotechnol. J. 2018;16:354–366. doi: 10.1111/pbi.12776. PubMed DOI PMC
Klap C., Yeshayahou E., Bolger A.M., Arazi T., Gupta S.K., Shabtai S., Usadel B., Salts Y., Barg R. Tomato facultative parthenocarpy results from Sl AGAMOUS-LIKE 6 loss of function. Plant Biotechnol. J. 2017;15:634–647. doi: 10.1111/pbi.12662. PubMed DOI PMC
Spicher L., Almeida J., Gutbrod K., Pipitone R., Dörmann P., Glauser G., Rossi M., Kessler F. Essential role for phytol kinase and tocopherol in tolerance to combined light and temperature stress in tomato. J. Exp. Bot. 2017;68:5845–5856. doi: 10.1093/jxb/erx356. PubMed DOI PMC
Zhang S., Wang S., Lv J., Liu Z., Wang Y., Ma N., Meng Q. SUMO E3 ligase SlSIZ1 facilitates heat tolerance in tomato. Plant Cell Physiol. 2018;59:58–71. doi: 10.1093/pcp/pcx160. PubMed DOI
Zhuang K., Gao Y., Liu Z., Diao P., Sui N., Meng Q., Meng C., Kong F. WHIRLY1 regulates HSP21. 5A expression to promote thermotolerance in tomato. Plant Cell Physiol. 2020;61:169–177. doi: 10.1093/pcp/pcz189. PubMed DOI
Olias R., Eljakaoui Z., Li J., DE MORALES P.A., MARÍN-MANZANO M.C., Pardo J.M., Belver A. The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ. 2009;32:904–916. doi: 10.1111/j.1365-3040.2009.01971.x. PubMed DOI
Cai X., Zhang C., Shu W., Ye Z., Li H., Zhang Y. The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochem. Biophys. Res. Commun. 2016;474:736–741. doi: 10.1016/j.bbrc.2016.04.148. PubMed DOI
Wang L., Hu Z., Zhu M., Zhu Z., Hu J., Qanmber G., Chen G. The abiotic stress-responsive NAC transcription factor SlNAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.) Plant Celltissue Organ Cult. (PCTOC) 2017;129:161–174. doi: 10.1007/s11240-017-1167-x. DOI
Campos J.F., Cara B., Pérez-Martín F., Pineda B., Egea I., Flores F.B., Fernandez-Garcia N., Capel J., Moreno V., Angosto T. The tomato mutant ars1 (altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation. Plant Biotechnol. J. 2016;14:1345–1356. doi: 10.1111/pbi.12498. PubMed DOI PMC
Liu B., Ouyang Z., Zhang Y., Li X., Hong Y., Huang L., Liu S., Zhang H., Li D., Song F. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response. PLoS ONE. 2014;9:e102067. doi: 10.1371/journal.pone.0102067. PubMed DOI PMC
Vick B.A., Zimmerman D.C. Biosynthesis of jasmonic acid by several plant species. Plant Physiol. 1984;75:458–461. doi: 10.1104/pp.75.2.458. PubMed DOI PMC
Heitz T., Bergey D.R., Ryan C.A. A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol. 1997;114:1085–1093. doi: 10.1104/pp.114.3.1085. PubMed DOI PMC
Hu T., Hu Z., Zeng H., Qv X., Chen G. Tomato lipoxygenase D involved in the biosynthesis of jasmonic acid and tolerance to abiotic and biotic stress in tomato. Plant Biotechnol. Rep. 2015;9:37–45. doi: 10.1007/s11816-015-0341-z. DOI
AbuQamar S., Luo H., Laluk K., Mickelbart M.V., Mengiste T. Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J. 2009;58:347–360. doi: 10.1111/j.1365-313X.2008.03783.x. PubMed DOI
Du L., Ali G.S., Simons K.A., Hou J., Yang T., Reddy A., Poovaiah B. Ca 2+/calmodulin regulates salicylic-acid-mediated plant immunity. Nature. 2009;457:1154–1158. doi: 10.1038/nature07612. PubMed DOI
Galon Y., Nave R., Boyce J.M., Nachmias D., Knight M.R., Fromm H. Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett. 2008;582:943–948. doi: 10.1016/j.febslet.2008.02.037. PubMed DOI
Laluk K., Prasad K., Savchenko T., Celesnik H., Dehesh K., Levy M., Mitchell-Olds T., Reddy A. The calmodulin-binding transcription factor SIGNAL RESPONSIVE1 is a novel regulator of glucosinolate metabolism and herbivory tolerance in Arabidopsis. Plant Cell Physiol. 2012;53:2008–2015. doi: 10.1093/pcp/pcs143. PubMed DOI PMC
Nie H., Zhao C., Wu G., Wu Y., Chen Y., Tang D. SR1, a calmodulin-binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol. 2012;158:1847–1859. doi: 10.1104/pp.111.192310. PubMed DOI PMC
Qiu Y., Xi J., Du L., Suttle J.C., Poovaiah B. Coupling calcium/calmodulin-mediated signaling and herbivore-induced plant response through calmodulin-binding transcription factor AtSR1/CAMTA3. Plant Mol. Biol. 2012;79:89–99. doi: 10.1007/s11103-012-9896-z. PubMed DOI
Doherty C.J., Van Buskirk H.A., Myers S.J., Thomashow M.F. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell. 2009;21:972–984. doi: 10.1105/tpc.108.063958. PubMed DOI PMC
Kim Y., Park S., Gilmour S.J., Thomashow M.F. Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of A rabidopsis. Plant J. 2013;75:364–376. doi: 10.1111/tpj.12205. PubMed DOI
Pandey N., Ranjan A., Pant P., Tripathi R.K., Ateek F., Pandey H.P., Patre U.V., Sawant S.V. CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genom. 2013;14:216. doi: 10.1186/1471-2164-14-216. PubMed DOI PMC
Yang T., Peng H., Whitaker B.D., Jurick W.M. Differential expression of calcium/calmodulin-regulated SlSRs in response to abiotic and biotic stresses in tomato fruit. Physiol. Plant. 2013;148:445–455. doi: 10.1111/ppl.12027. PubMed DOI
Yang T., Peng H., Whitaker B.D., Conway W.S. Characterization of a calcium/calmodulin-regulated SR/CAMTA gene family during tomato fruit development and ripening. BMC Plant Biol. 2012;12:19. doi: 10.1186/1471-2229-12-19. PubMed DOI PMC
Li X., Huang L., Zhang Y., Ouyang Z., Hong Y., Zhang H., Li D., Song F. Tomato SR/CAMTA transcription factors SlSR1 and SlSR3L negatively regulate disease resistance response and SlSR1L positively modulates drought stress tolerance. BMC Plant Biol. 2014;14:286. doi: 10.1186/s12870-014-0286-3. PubMed DOI PMC
Priyanka B., Sekhar K., Reddy V.D., Rao K.V. Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. Plant Biotechnol. J. 2010;8:76–87. doi: 10.1111/j.1467-7652.2009.00467.x. PubMed DOI
Tan J., Zhuo C., Guo Z. Nitric oxide mediates cold-and dehydration-induced expression of a novel MfHyPRP that confers tolerance to abiotic stress. Physiol. Plant. 2013;149:310–320. PubMed
Xu D., Huang X., Xu Z.-Q., Schläppi M. The HyPRP gene EARLI1 has an auxiliary role for germinability and early seedling development under low temperature and salt stress conditions in Arabidopsis thaliana. Planta. 2011;234:565–577. doi: 10.1007/s00425-011-1425-9. PubMed DOI
Yeom S.I., Seo E., Oh S.K., Kim K.W., Choi D. A common plant cell-wall protein HyPRP1 has dual roles as a positive regulator of cell death and a negative regulator of basal defense against pathogens. Plant J. 2012;69:755–768. doi: 10.1111/j.1365-313X.2011.04828.x. PubMed DOI
Zhang Y., Schläppi M. Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants. Planta. 2007;227:233–243. doi: 10.1007/s00425-007-0611-2. PubMed DOI
Li J., Ouyang B., Wang T., Luo Z., Yang C., Li H., Sima W., Zhang J., Ye Z. HyPRP1 gene suppressed by multiple stresses plays a negative role in abiotic stress tolerance in tomato. Front. Plant Sci. 2016;7:967. doi: 10.3389/fpls.2016.00967. PubMed DOI PMC
Chakravarthy S., Tuori R.P., D’Ascenzo M.D., Fobert P.R., Després C., Martin G.B. The tomato transcription factor Pti4 regulates defense-related gene expression via GCC box and non-GCC box cis elements. Plant Cell. 2003;15:3033–3050. doi: 10.1105/tpc.017574. PubMed DOI PMC
Gu Y.-Q., Wildermuth M.C., Chakravarthy S., Loh Y.-T., Yang C., He X., Han Y., Martin G.B. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell. 2002;14:817–831. doi: 10.1105/tpc.000794. PubMed DOI PMC
Mysore K.S., Crasta O.R., Tuori R.P., Folkerts O., Swirsky P.B., Martin G.B. Comprehensive transcript profiling of Pto-and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato. Plant J. 2002;32:299–315. doi: 10.1046/j.1365-313X.2002.01424.x. PubMed DOI
Sun Y., Liang B., Wang J., Kai W., Chen P., Jiang L., Du Y., Leng P. SlPti4 affects regulation of fruit ripening, seed germination and stress responses by modulating ABA signaling in tomato. Plant Cell Physiol. 2018;59:1956–1965. doi: 10.1093/pcp/pcy111. PubMed DOI
Xu C., Liberatore K.L., MacAlister C.A., Huang Z., Chu Y.-H., Jiang K., Brooks C., Ogawa-Ohnishi M., Xiong G., Pauly M. A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet. 2015;47:784–792. doi: 10.1038/ng.3309. PubMed DOI
Rodríguez-Leal D., Lemmon Z.H., Man J., Bartlett M.E., Lippman Z.B. Engineering quantitative trait variation for crop improvement by genome editing. Cell. 2017;171:470–480.e478. doi: 10.1016/j.cell.2017.08.030. PubMed DOI
Soyk S., Müller N.A., Park S.J., Schmalenbach I., Jiang K., Hayama R., Zhang L., Van Eck J., Jiménez-Gómez J.M., Lippman Z.B. Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat. Genet. 2017;49:162–168. doi: 10.1038/ng.3733. PubMed DOI
Li T., Yang X., Yu Y., Si X., Zhai X., Zhang H., Dong W., Gao C., Xu C. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 2018;36:1160–1163. doi: 10.1038/nbt.4273. PubMed DOI
Zsögön A., Čermák T., Naves E.R., Notini M.M., Edel K.H., Weinl S., Freschi L., Voytas D.F., Kudla J., Peres L.E.P. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 2018;36:1211–1216. doi: 10.1038/nbt.4272. PubMed DOI
Ito Y., Nishizawa-Yokoi A., Endo M., Mikami M., Toki S. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Commun. 2015;467:76–82. doi: 10.1016/j.bbrc.2015.09.117. PubMed DOI
Ito Y., Nishizawa-Yokoi A., Endo M., Mikami M., Shima Y., Nakamura N., Kotake-Nara E., Kawasaki S., Toki S. Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nat. Plants. 2017;3:866–874. doi: 10.1038/s41477-017-0041-5. PubMed DOI
Ito Y., Sekiyama Y., Nakayama H., Nishizawa-Yokoi A., Endo M., Shima Y., Nakamura N., Kotake-Nara E., Kawasaki S., Hirose S. Allelic Mutations in the Ripening-Inhibitor Locus Generate Extensive Variation in Tomato Ripening. Plant Physiol. 2020;183:80–95. doi: 10.1104/pp.20.00020. PubMed DOI PMC
Yang Y., Zhu G., Li R., Yan S., Fu D., Zhu B., Tian H., Luo Y., Zhu H. The RNA editing factor SlORRM4 is required for normal fruit ripening in tomato. Plant Physiol. 2017;175:1690–1702. doi: 10.1104/pp.17.01265. PubMed DOI PMC
Yu Q.-h., Wang B., Li N., Tang Y., Yang S., Yang T., Xu J., Guo C., Yan P., Wang Q. CRISPR/Cas9-induced targeted mutagenesis and gene replacement to generate long-shelf life tomato lines. Sci. Rep. 2017;7:1–9. doi: 10.1038/s41598-017-12262-1. PubMed DOI PMC
Sravankumar T., Naik N., Kumar R. A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.) Plant Mol. Biol. 2018;98:455–469. doi: 10.1007/s11103-018-0790-1. PubMed DOI
Ueta R., Abe C., Watanabe T., Sugano S.S., Ishihara R., Ezura H., Osakabe Y., Osakabe K. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci. Rep. 2017;7:1–8. doi: 10.1038/s41598-017-00501-4. PubMed DOI PMC
Li X., Wang Y., Chen S., Tian H., Fu D., Zhu B., Luo Y., Zhu H. Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front. Plant Sci. 2018;9:559. doi: 10.3389/fpls.2018.00559. PubMed DOI PMC
Gago C., Drosou V., Paschalidis K., Guerreiro A., Miguel G., Antunes D., Hilioti Z. Targeted gene disruption coupled with metabolic screen approach to uncover the LEAFY COTYLEDON1-LIKE4 (L1L4) function in tomato fruit metabolism. Plant Cell Rep. 2017;36:1065–1082. doi: 10.1007/s00299-017-2137-9. PubMed DOI
Hilioti Z., Ganopoulos I., Ajith S., Bossis I., Tsaftaris A. A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: The tomato LEC1-LIKE4 gene case. Plant Cell Rep. 2016;35:2241–2255. doi: 10.1007/s00299-016-2031-x. PubMed DOI
Li R., Li R., Li X., Fu D., Zhu B., Tian H., Luo Y., Zhu H. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol. J. 2018;16:415–427. doi: 10.1111/pbi.12781. PubMed DOI PMC
Shimatani Z., Kashojiya S., Takayama M., Terada R., Arazoe T., Ishii H., Teramura H., Yamamoto T., Komatsu H., Miura K. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 2017;35:441–443. doi: 10.1038/nbt.3833. PubMed DOI
Xu C., Park S.J., Van Eck J., Lippman Z.B. Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes Dev. 2016;30:2048–2061. doi: 10.1101/gad.288415.116. PubMed DOI PMC
Pan C., Ye L., Qin L., Liu X., He Y., Wang J., Chen L., Lu G. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci. Rep. 2016;6:24765. doi: 10.1038/srep24765. PubMed DOI PMC
Keddie J.S., Carroll B., Jones J., Gruissem W. The DCL gene of tomato is required for chloroplast development and palisade cell morphogenesis in leaves. EMBO J. 1996;15:4208–4217. doi: 10.1002/j.1460-2075.1996.tb00795.x. PubMed DOI PMC
Ron M., Kajala K., Pauluzzi G., Wang D., Reynoso M.A., Zumstein K., Garcha J., Winte S., Masson H., Inagaki S. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiol. 2014;166:455–469. doi: 10.1104/pp.114.239392. PubMed DOI PMC
Lor V.S., Starker C.G., Voytas D.F., Weiss D., Olszewski N.E. Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiol. 2014;166:1288–1291. doi: 10.1104/pp.114.247593. PubMed DOI PMC
Hayut S.F., Bessudo C.M., Levy A.A. Targeted recombination between homologous chromosomes for precise breeding in tomato. Nat. Commun. 2017;8:1–9. PubMed PMC
Xie K., Zhang J., Yang Y. Genome-wide prediction of highly specific guide RNA spacers for CRISPR–Cas9-mediated genome editing in model plants and major crops. Mol. Plant. 2014;7:923–926. doi: 10.1093/mp/ssu009. PubMed DOI
Zaidi S.S.A., Mahfouz M.M., Mansoor S. CRISPR-Cpf1: A new tool for plant genome editing. Trends Plant Sci. 2017;22:550–553. doi: 10.1016/j.tplants.2017.05.001. PubMed DOI
Zetsche B., Gootenberg J.S., Abudayyeh O.O., Slaymaker I.M., Makarova K.S., Essletzbichler P., Volz S.E., Joung J., Van Der Oost J., Regev A. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163:759–771. doi: 10.1016/j.cell.2015.09.038. PubMed DOI PMC
Hua K., Zhang J., Botella J.R., Ma C., Kong F., Liu B., Zhu J.-K. Perspectives on the application of genome-editing technologies in crop breeding. Mol. Plant. 2019;12:1047–1059. doi: 10.1016/j.molp.2019.06.009. PubMed DOI
Clarke J.L., Zhang P. Plant biotechnology for food security and bioeconomy. Plant Mol. Biol. 2013;83:1–3. doi: 10.1007/s11103-013-0097-1. PubMed DOI
Bhargava A., Srivastava S. Participatory Plant Breeding: Concept and Applications. Springer; Singapore: 2019.
Mann C.C. Genetic engineers aim to soup up crop photosynthesis. Science. 1999;283:314–316. doi: 10.1126/science.283.5400.314. PubMed DOI