Transformed tissue of Dionaea muscipula J. Ellis as a source of biologically active phenolic compounds with bactericidal properties
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2018/31/N/NZ9/00581
Narodowe Centrum Nauki
PubMed
33447868
PubMed Central
PMC7843487
DOI
10.1007/s00253-021-11101-8
PII: 10.1007/s00253-021-11101-8
Knihovny.cz E-zdroje
- Klíčová slova
- Phenolic acids, Plumbagin, Rhizobium rhizogenes, Teratomas, Venus flytrap,
- MeSH
- Agrobacterium genetika MeSH
- antibakteriální látky farmakologie MeSH
- Droseraceae * MeSH
- fenoly MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- fenoly MeSH
The Venus flytrap (Dionaea muscipula J. Ellis) is a carnivorous plant able to synthesize large amounts of phenolic compounds, such as phenylpropanoids, flavonoids, phenolic acids, and 1,4-naphtoquinones. In this study, the first genetic transformation of D. muscipula tissues is presented. Two wild-type Rhizobium rhizogenes strains (LBA 9402 and ATCC 15834) were suitable vector organisms in the transformation process. Transformation led to the formation of teratoma (transformed shoot) cultures with the bacterial rolB gene incorporated into the plant genome in a single copy. Using high-pressure liquid chromatography, we demonstrated that transgenic plants were characterized by an increased quantity of phenolic compounds, including 1,4-naphtoquinone derivative, plumbagin (up to 106.63 mg × g-1 DW), and phenolic acids (including salicylic, caffeic, and ellagic acid), in comparison to non-transformed plants. Moreover, Rhizobium-mediated transformation highly increased the bactericidal properties of teratoma-derived extracts. The antibacterial properties of transformed plants were increased up to 33% against Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli and up to 7% against Pseudomonas aeruginosa. For the first time, we prove the possibility of D. muscipula transformation. Moreover, we propose that transformation may be a valuable tool for enhancing secondary metabolite production in D. muscipula tissue and to increase bactericidal properties against human antibiotic-resistant bacteria. KEY POINTS: • Rhizobium-mediated transformation created Dionaea muscipula teratomas. • Transformed plants had highly increased synthesis of phenolic compounds. • The MBC value was connected with plumbagin and phenolic acid concentrations.
Institute of Biotechnology and Molecular Medicine Gdansk Poland
The Franciszek Górski Institute of Plant Physiology The Polish Academy of Sciences Krakow Poland
Zobrazit více v PubMed
Alok A, Vishnu S, Pala Z, Kumar J, Kudale S, Desai N. In vitro regeneration and optimization of factors affecting Agrobacterium mediated transformation in Artemisia Pallens, an important medicinal plant. Physiol Mol Biol Plants. 2016;22(2):261–269. doi: 10.1007/s12298-016-0353-3. PubMed DOI PMC
Ansari MA, Chung IM, Rajakumar G, Alzohairy MA, Almatroudi A, Khanna VG, Thiruvengadam M. Evaluation of polyphenolic compounds and pharmacological activities in hairy root cultures of Ligularia fischeri Turcz. f. spiciformis (Nakai) Molecules. 2019;24:1586. doi: 10.3390/molecules24081586. PubMed DOI PMC
Banasiuk R, Kawiak A, Krolicka A. In vitro cultures of carnivorous plants from the Drosera and Dionaea genus for the production of biologically active secondary metabolites. Biotechnologia. 2012;93:87–96. doi: 10.5114/bta.2012.46572. DOI
Bekesiova I, Nap JP, Mlynarova L. Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol Biol Report. 1999;17:269–277. doi: 10.1023/A:1007627509824. DOI
Binoy J, Silja PK, Dhanya BP, Satheeshkumar K. In vitro cultivation of hairy roots of Plumbago rosea L. in a customized reaction kettle for the production of plumbagin-an anticancer compound. Ind Crop Prod. 2016;87:89–95. doi: 10.1016/j.indcrop.2016.04.023. DOI
Blehova A, Svubova R, Lukacova Z, Moravcikova J, Matusikova I. Transformation of sundew: pitfalls and promises. Plant Cell Tissue Organ Cult. 2015;120:681–687. doi: 10.1007/s11240-014-0635-9. DOI
Boonsnongcheepa P, Sae-fooa W, Banpakoata K, Channaronga S, Chitsaithana S, Uafuaa P, Puthaa W, Kerdsiria K, Putaluna W. Artificial color light sources and precursor feeding enhance plumbagin production of the carnivorous plants Drosera burmannii and Drosera indica. J Photochem Photobiol B Biol. 2019;199:111628. doi: 10.1016/j.jphotobiol.2019.111628. PubMed DOI
Bulgakov VP. Functions of rol genes in plant secondary metabolism. Biotechnol Adv. 2008;26:318–324. doi: 10.1016/j.biotechadv.2008.03.001. PubMed DOI
Canter PH, Thomas H, Ernst E. Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol. 2005;23(4):180–185. doi: 10.1016/j.tibtech.2005.02.002. PubMed DOI
Franklin G, Conceição LFR, Kombrink E, Dias ACP. Hypericum perforatum plant cells reduce Agrobacterium viability during co-cultivation. Planta. 2008;227:1401–1408. doi: 10.1007/s00425-008-0691-7. PubMed DOI PMC
Franklin G, Conceiçăo LFR, Kombrink E, Dias ACP. Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry. 2009;70:60–68. doi: 10.1016/j.phytochem.2008.10.016. PubMed DOI
Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem. 2000;48:3597–3604. doi: 10.1021/jf000220w. PubMed DOI
Gaascht F, Dicato M, Diederich M. Venus flytrap (Dionaea muscipula Solander ex Ellis) contains powerful compounds that prevent and cure cancer. Front Oncol. 2013;3:202. doi: 10.3389/fonc.2013.00202. PubMed DOI PMC
Gandhi SG, Mahajan V, Bedi YS. Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta. 2015;241:303–317. doi: 10.1007/s00425-014-2232-x. PubMed DOI
Gangopadhyay M, Chakraborty D, Bhattacharyya S, Bhattacharya S. Regeneration of transformed plants from hairy roots of Plumbago indica. Plant Cell Tissue Organ Cult. 2010;102:109–114. doi: 10.1007/s11240-010-9702-z. DOI
Gangopadhyay M, Dewanjee S, Chakraborty D, Bhattacharya S. Role of exogenous phytohormones on growth and plumbagin accumulation in Plumbago indica hairy roots and conservation of elite root clones via synthetic seeds. Ind Crop Prod. 2011;33:445–450. doi: 10.1016/j.indcrop.2010.10.030. DOI
Georgiev MI, Pavlov AI, Bley T. Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol. 2007;74:1175–1185. doi: 10.1007/s00253-007-0856-5. PubMed DOI
Ghimire BK, Thiruvengadam M, Chung IM. Identification of elicitors enhances the polyphenolic compounds and pharmacological potential in hairy root cultures of Aster scaber. S Afr J Bot. 2019;125:92–101. doi: 10.1016/j.sajb.2019.07.006. DOI
Gomes F, Martins N, Barros L, Rodrigues ME, Oliveira MBPP, Henriques M, Ferreira ICFR. Plant phenolic extracts as an effective strategy to control Staphylococcus aureus, the dairy industry pathogen. Ind Crop Prod. 2018;112:515–520. doi: 10.1016/j.indcrop.2017.12.027. DOI
Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P. Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol. 2006;9:341–346. doi: 10.1016/j.pbi.2006.03.008. PubMed DOI
Habibi P, Grossi de Sa MF, Lopes da Silva AL, Makhzoum A, da Luz Costa J, Borghetti IA, Soccol CR. Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare. Physiol Mol Biol Plants. 2016;22(2):271–277. doi: 10.1007/s12298-016-0354-2. PubMed DOI PMC
Hirsikorpi M, Kamarainen T, Teeri T, Hohtola A. Agrobacterium-mediated transformation of round leaved sundew (Drosera rotundifolia L.) Plant Sci. 2002;162:537–542. doi: 10.1016/S0168-9452(01)00592-1. DOI
Hou W, Shakya P, Franklin G. A perspective on Hypericum perforatum genetic transformation. Front Plant Sci. 2016;7:879. doi: 10.3389/fpls.2016.00879. PubMed DOI PMC
Kawiak A, Domachowska A, Królicka A, Smolarska M, Łojkowska E. 3-Chloroplumbagin induces cell death in breast cancer cells through MAPK-mediated Mcl-1 inhibition. Front Pharmacol. 2019;10:784. doi: 10.3389/fphar.2019.00784. PubMed DOI PMC
Królicka A, Staniszewska I, Bielawski K, Maliński E, Szafranek J, Łojkowska E. Establishment of hairy root cultures of Ammi majus. Plant Sci. 2001;160:259–264. doi: 10.1016/S0168-9452(00)00381-2. PubMed DOI
Krolicka A, Szpitter A, Gilgenast E, Romanik G, Kaminski M, Lojkowska E. Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants by addition of elicitors. Enzym Microb Technol. 2008;42:216–221. doi: 10.1016/j.enzmictec.2007.09.011. DOI
Królicka A, Szpitter A, Maciąg A, Biskup E, Gilgenast E, Romanik G, Kamiński M, Węgrzyn G, Łojkowska E. Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of the Alice sundew (Drosera aliciae) Biotechnol Appl Biochem. 2009;53:175–184. doi: 10.1042/BA20080088. PubMed DOI
Królicka A, Szpitter A, Stawujak K, Barański R, Gwizdek-Wiśniewska A, Skrzypczak A, Kamiński M, Łojkowska E. Teratomas of Drosera capensis var. alba as a source of naphthoquinone: Ramentaceone. Plant Cell Tissue Organ Cult. 2010;103:285–292. doi: 10.1007/s11240-010-9778-5. DOI
Krychowiak M, Grinholc M, Banasiuk R, Krauze-Baranowska M, Głód D, Kawiak A, Królicka A. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLoS One. 2014;9:e115727. doi: 10.1371/journal.pone.0115727. PubMed DOI PMC
Libik-Konieczny M, Michalec-Warzecha Ż, Dziurka M, Zastawny O, Konieczny R, Rozpądek P, Pistelli L. Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions. Appl Microbiol Biotechnol. 2020;104:5929–5941. doi: 10.1007/s00253-020-10661-5. PubMed DOI
Makowski W, Tokarz B, Banasiuk R, Królicka A, Dziurka M, Wojciechowska R, Tokarz KM. Is a blue–red light a good elicitor of phenolic compounds in the family Droseraceae? A comparative study. J Photochem Photobiol B Biol. 2019;201:111679. doi: 10.1016/j.jphotobiol.2019.111679. PubMed DOI
Makowski W, Tokarz KM, Tokarz B, Banasiuk R, Witek K, Królicka A. Elicitation-based method for increasing the production of antioxidant and bactericidal phenolic compounds in Dionaea muscipula J. Ellis tissue. Molecules. 2020;25:1794. doi: 10.3390/molecules25081794. PubMed DOI PMC
Maniatis T, Fritsch EF, Sambrook J. A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory; 1982. Molecular cloning; pp. 213–214.
Miguel S, Nisse E, Biteau F, Rottloff S, Mignard B, Gontier E, Hehn A, Bourgaud F. Assessing carnivorous plants for the production of recombinant proteins. Front Plant Sci. 2019;10:793. doi: 10.3389/fpls.2019.00793. PubMed DOI PMC
Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Niazian M. Application of genetics and biotechnology for improving medicinal plants. Planta. 2019;249:953–973. doi: 10.1007/s00425-019-03099-1. PubMed DOI
Nowicka A, Tokarz B, Zwyrtková J, Dvořák Tomaštíková E, Procházková K, Ercan U, Finke E, Rozhon E, Poppenberger E, Otmar M, Niezgodzki I, Krečmerová M, Schubert I, Pecinka A. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant J. 2020;102(1):68–84. doi: 10.1111/tpj.14612. PubMed DOI
Oropeza-Aburto A, Cervantes-Pérez SA, Albert VA, Herrera-Estrella L. Agrobacterium tumefaciens mediated transformation of the aquatic carnivorous plant Utricularia gibba. Plant Methods. 2020;16:50. doi: 10.1186/s13007-020-00592-7. PubMed DOI PMC
Padhye S, Dandawate P, Yusufi M, Ahmad A, Sarkar FH. Perspectives on medicinal properties of plumbagin and its analogs. Med Res Rev. 2010;32:1131–1158. doi: 10.1002/med.20235. PubMed DOI
Piątczak E, Jeleń A, Makowczyńska J, Zielińska S, Kuźma Ł, Balcerczak E. Establishment of hairy root cultures of Rehmannia elata N.E. Brown ex Prain and production of iridoid and phenylethanoid glycosides. Ind Crop Prod. 2019;137:308–314. doi: 10.1016/j.indcrop.2019.05.022. DOI
Putalun W, Udomsin O, Yusakul G, Juengwatanatrakul T, Sakamoto S, Tanaka H. Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation. Biotechnol Lett. 2010;32:721–724. doi: 10.1007/s10529-010-0202-3. PubMed DOI
Swain T, Hillis WE. Phenolic constituents of Prunus domestica. I quantitative analysis of phenolic constituents. J Sci Food Agric. 1959;10:63–68. doi: 10.1002/jsfa.2740100110. DOI
Thiruvengadam M, Praveen N, John KMM, Yang Y, Kim S, Chung I. Establishment of Momordica charantia hairy root cultures for the production of phenolic compounds and determination of their biological activities. Plant Cell Tissue Organ Cult. 2014;118:545–557. doi: 10.1007/s11240-014-0506-4. DOI
Thiruvengadam M, Praveen N, Kim E-H, Kim S-H, Chung I-M. Production of anthraquinones, phenolic compounds and biological activities from hairy root cultures of Polygonum multiflorum Thunb. Protoplasma. 2014;251:555–566. doi: 10.1007/s00709-013-0554-3. PubMed DOI
Tokarz K, Makowski W, Banasiuk R, Królicka A, Piwowarczyk B. Response of Dionaea muscipula J. Ellis to light stress in in vitro: physiological study. Plant Cell Tissue Organ Cult. 2018;134(1):65–77. doi: 10.1007/s11240-018-1400-2. DOI
Tokarz KM, Makowski W, Tokarz B, Hanula M, Sitek E, Muszyńska E, Jędrzejczyk R, Banasiuk R, Chajec Ł, Mazur S. Can Ceylon leadwort (Plumbago zeylanica L.) acclimate to lead toxicity? - studies of photosynthetic apparatus effciency. Int J Mol Sci. 2020;21:1866. doi: 10.3390/ijms21051866. PubMed DOI PMC
Tusevski O, Petreska Stanoeva J, Stefova M, Gadzovska Simic S. Agrobacterium enhances xanthone production in Hypericum perforatum cell suspension. Plant Growth Regul. 2015;76:199–210. doi: 10.1007/s10725-014-9989-6. DOI
Tusevski O, Vinterhalter B, Krstić Milošević D, Soković M, Ćirić A, Vinterhalter D, Zdravković Korać S, Petreska Stanoeva J, Stefova M, Gadzovska Simic S. Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult. 2017;128:589–605. doi: 10.1007/s11240-016-1136-9. DOI
Tusevski O, Petreska Stanoeva J, Stefova M, Spasenoski M, Gadzovska Simic S. State of antioxidant systems and phenolic compounds’ production in Hypericum perforatum L. hairy roots. Acta Physiol Plant. 2019;41:132. doi: 10.1007/s11738-019-2919-5. DOI
Vinterhalter B, Zdravkovic-Korac S, Mitic N, Bohanec B, Vinterhalter D, Savic J (2015) Effect of sucrose on shoot regeneration in Agrobacterium transformed Hypericum perforatum L. roots. Acta Physiol Plant 37:37. 10.1007/s11738-015-1785-z
Wang B, Zhang G, Zhu L, Chen L, Zhang Y. Genetic transformation of Echinacea purpurea with Agrobacterium rhizogenes and bioactive ingredient analysis in transformed cultures. Colloids Surf B Biointerfaces. 2006;53:101–104. doi: 10.1016/j.colsurfb.2006.08.003. PubMed DOI
Wen T, Hao YJ, An XL, Sun HD, Li YR, Chen X, Piao XC, Lian ML. Improvement of bioactive compound accumulation in cell cultures of Orostachys cartilaginous A. Bor. through elicitation with salicylic acid and effect of cell extract on bioactive activity. Ind Crop Prod. 2019;139:111570. doi: 10.1016/j.indcrop.2019.111570. DOI