Transformed tissue of Dionaea muscipula J. Ellis as a source of biologically active phenolic compounds with bactericidal properties

. 2021 Feb ; 105 (3) : 1215-1226. [epub] 20210115

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33447868

Grantová podpora
2018/31/N/NZ9/00581 Narodowe Centrum Nauki

Odkazy

PubMed 33447868
PubMed Central PMC7843487
DOI 10.1007/s00253-021-11101-8
PII: 10.1007/s00253-021-11101-8
Knihovny.cz E-zdroje

The Venus flytrap (Dionaea muscipula J. Ellis) is a carnivorous plant able to synthesize large amounts of phenolic compounds, such as phenylpropanoids, flavonoids, phenolic acids, and 1,4-naphtoquinones. In this study, the first genetic transformation of D. muscipula tissues is presented. Two wild-type Rhizobium rhizogenes strains (LBA 9402 and ATCC 15834) were suitable vector organisms in the transformation process. Transformation led to the formation of teratoma (transformed shoot) cultures with the bacterial rolB gene incorporated into the plant genome in a single copy. Using high-pressure liquid chromatography, we demonstrated that transgenic plants were characterized by an increased quantity of phenolic compounds, including 1,4-naphtoquinone derivative, plumbagin (up to 106.63 mg × g-1 DW), and phenolic acids (including salicylic, caffeic, and ellagic acid), in comparison to non-transformed plants. Moreover, Rhizobium-mediated transformation highly increased the bactericidal properties of teratoma-derived extracts. The antibacterial properties of transformed plants were increased up to 33% against Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli and up to 7% against Pseudomonas aeruginosa. For the first time, we prove the possibility of D. muscipula transformation. Moreover, we propose that transformation may be a valuable tool for enhancing secondary metabolite production in D. muscipula tissue and to increase bactericidal properties against human antibiotic-resistant bacteria. KEY POINTS: • Rhizobium-mediated transformation created Dionaea muscipula teratomas. • Transformed plants had highly increased synthesis of phenolic compounds. • The MBC value was connected with plumbagin and phenolic acid concentrations.

Zobrazit více v PubMed

Alok A, Vishnu S, Pala Z, Kumar J, Kudale S, Desai N. In vitro regeneration and optimization of factors affecting Agrobacterium mediated transformation in Artemisia Pallens, an important medicinal plant. Physiol Mol Biol Plants. 2016;22(2):261–269. doi: 10.1007/s12298-016-0353-3. PubMed DOI PMC

Ansari MA, Chung IM, Rajakumar G, Alzohairy MA, Almatroudi A, Khanna VG, Thiruvengadam M. Evaluation of polyphenolic compounds and pharmacological activities in hairy root cultures of Ligularia fischeri Turcz. f. spiciformis (Nakai) Molecules. 2019;24:1586. doi: 10.3390/molecules24081586. PubMed DOI PMC

Banasiuk R, Kawiak A, Krolicka A. In vitro cultures of carnivorous plants from the Drosera and Dionaea genus for the production of biologically active secondary metabolites. Biotechnologia. 2012;93:87–96. doi: 10.5114/bta.2012.46572. DOI

Bekesiova I, Nap JP, Mlynarova L. Isolation of high quality DNA and RNA from leaves of the carnivorous plant Drosera rotundifolia. Plant Mol Biol Report. 1999;17:269–277. doi: 10.1023/A:1007627509824. DOI

Binoy J, Silja PK, Dhanya BP, Satheeshkumar K. In vitro cultivation of hairy roots of Plumbago rosea L. in a customized reaction kettle for the production of plumbagin-an anticancer compound. Ind Crop Prod. 2016;87:89–95. doi: 10.1016/j.indcrop.2016.04.023. DOI

Blehova A, Svubova R, Lukacova Z, Moravcikova J, Matusikova I. Transformation of sundew: pitfalls and promises. Plant Cell Tissue Organ Cult. 2015;120:681–687. doi: 10.1007/s11240-014-0635-9. DOI

Boonsnongcheepa P, Sae-fooa W, Banpakoata K, Channaronga S, Chitsaithana S, Uafuaa P, Puthaa W, Kerdsiria K, Putaluna W. Artificial color light sources and precursor feeding enhance plumbagin production of the carnivorous plants Drosera burmannii and Drosera indica. J Photochem Photobiol B Biol. 2019;199:111628. doi: 10.1016/j.jphotobiol.2019.111628. PubMed DOI

Bulgakov VP. Functions of rol genes in plant secondary metabolism. Biotechnol Adv. 2008;26:318–324. doi: 10.1016/j.biotechadv.2008.03.001. PubMed DOI

Canter PH, Thomas H, Ernst E. Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends Biotechnol. 2005;23(4):180–185. doi: 10.1016/j.tibtech.2005.02.002. PubMed DOI

Franklin G, Conceição LFR, Kombrink E, Dias ACP. Hypericum perforatum plant cells reduce Agrobacterium viability during co-cultivation. Planta. 2008;227:1401–1408. doi: 10.1007/s00425-008-0691-7. PubMed DOI PMC

Franklin G, Conceiçăo LFR, Kombrink E, Dias ACP. Xanthone biosynthesis in Hypericum perforatum cells provides antioxidant and antimicrobial protection upon biotic stress. Phytochemistry. 2009;70:60–68. doi: 10.1016/j.phytochem.2008.10.016. PubMed DOI

Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem. 2000;48:3597–3604. doi: 10.1021/jf000220w. PubMed DOI

Gaascht F, Dicato M, Diederich M. Venus flytrap (Dionaea muscipula Solander ex Ellis) contains powerful compounds that prevent and cure cancer. Front Oncol. 2013;3:202. doi: 10.3389/fonc.2013.00202. PubMed DOI PMC

Gandhi SG, Mahajan V, Bedi YS. Changing trends in biotechnology of secondary metabolism in medicinal and aromatic plants. Planta. 2015;241:303–317. doi: 10.1007/s00425-014-2232-x. PubMed DOI

Gangopadhyay M, Chakraborty D, Bhattacharyya S, Bhattacharya S. Regeneration of transformed plants from hairy roots of Plumbago indica. Plant Cell Tissue Organ Cult. 2010;102:109–114. doi: 10.1007/s11240-010-9702-z. DOI

Gangopadhyay M, Dewanjee S, Chakraborty D, Bhattacharya S. Role of exogenous phytohormones on growth and plumbagin accumulation in Plumbago indica hairy roots and conservation of elite root clones via synthetic seeds. Ind Crop Prod. 2011;33:445–450. doi: 10.1016/j.indcrop.2010.10.030. DOI

Georgiev MI, Pavlov AI, Bley T. Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol. 2007;74:1175–1185. doi: 10.1007/s00253-007-0856-5. PubMed DOI

Ghimire BK, Thiruvengadam M, Chung IM. Identification of elicitors enhances the polyphenolic compounds and pharmacological potential in hairy root cultures of Aster scaber. S Afr J Bot. 2019;125:92–101. doi: 10.1016/j.sajb.2019.07.006. DOI

Gomes F, Martins N, Barros L, Rodrigues ME, Oliveira MBPP, Henriques M, Ferreira ICFR. Plant phenolic extracts as an effective strategy to control Staphylococcus aureus, the dairy industry pathogen. Ind Crop Prod. 2018;112:515–520. doi: 10.1016/j.indcrop.2017.12.027. DOI

Guillon S, Tremouillaux-Guiller J, Pati PK, Rideau M, Gantet P. Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol. 2006;9:341–346. doi: 10.1016/j.pbi.2006.03.008. PubMed DOI

Habibi P, Grossi de Sa MF, Lopes da Silva AL, Makhzoum A, da Luz Costa J, Borghetti IA, Soccol CR. Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare. Physiol Mol Biol Plants. 2016;22(2):271–277. doi: 10.1007/s12298-016-0354-2. PubMed DOI PMC

Hirsikorpi M, Kamarainen T, Teeri T, Hohtola A. Agrobacterium-mediated transformation of round leaved sundew (Drosera rotundifolia L.) Plant Sci. 2002;162:537–542. doi: 10.1016/S0168-9452(01)00592-1. DOI

Hou W, Shakya P, Franklin G. A perspective on Hypericum perforatum genetic transformation. Front Plant Sci. 2016;7:879. doi: 10.3389/fpls.2016.00879. PubMed DOI PMC

Kawiak A, Domachowska A, Królicka A, Smolarska M, Łojkowska E. 3-Chloroplumbagin induces cell death in breast cancer cells through MAPK-mediated Mcl-1 inhibition. Front Pharmacol. 2019;10:784. doi: 10.3389/fphar.2019.00784. PubMed DOI PMC

Królicka A, Staniszewska I, Bielawski K, Maliński E, Szafranek J, Łojkowska E. Establishment of hairy root cultures of Ammi majus. Plant Sci. 2001;160:259–264. doi: 10.1016/S0168-9452(00)00381-2. PubMed DOI

Krolicka A, Szpitter A, Gilgenast E, Romanik G, Kaminski M, Lojkowska E. Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants by addition of elicitors. Enzym Microb Technol. 2008;42:216–221. doi: 10.1016/j.enzmictec.2007.09.011. DOI

Królicka A, Szpitter A, Maciąg A, Biskup E, Gilgenast E, Romanik G, Kamiński M, Węgrzyn G, Łojkowska E. Antibacterial and antioxidant activity of the secondary metabolites from in vitro cultures of the Alice sundew (Drosera aliciae) Biotechnol Appl Biochem. 2009;53:175–184. doi: 10.1042/BA20080088. PubMed DOI

Królicka A, Szpitter A, Stawujak K, Barański R, Gwizdek-Wiśniewska A, Skrzypczak A, Kamiński M, Łojkowska E. Teratomas of Drosera capensis var. alba as a source of naphthoquinone: Ramentaceone. Plant Cell Tissue Organ Cult. 2010;103:285–292. doi: 10.1007/s11240-010-9778-5. DOI

Krychowiak M, Grinholc M, Banasiuk R, Krauze-Baranowska M, Głód D, Kawiak A, Królicka A. Combination of silver nanoparticles and Drosera binata extract as a possible alternative for antibiotic treatment of burn wound infections caused by resistant Staphylococcus aureus. PLoS One. 2014;9:e115727. doi: 10.1371/journal.pone.0115727. PubMed DOI PMC

Libik-Konieczny M, Michalec-Warzecha Ż, Dziurka M, Zastawny O, Konieczny R, Rozpądek P, Pistelli L. Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions. Appl Microbiol Biotechnol. 2020;104:5929–5941. doi: 10.1007/s00253-020-10661-5. PubMed DOI

Makowski W, Tokarz B, Banasiuk R, Królicka A, Dziurka M, Wojciechowska R, Tokarz KM. Is a blue–red light a good elicitor of phenolic compounds in the family Droseraceae? A comparative study. J Photochem Photobiol B Biol. 2019;201:111679. doi: 10.1016/j.jphotobiol.2019.111679. PubMed DOI

Makowski W, Tokarz KM, Tokarz B, Banasiuk R, Witek K, Królicka A. Elicitation-based method for increasing the production of antioxidant and bactericidal phenolic compounds in Dionaea muscipula J. Ellis tissue. Molecules. 2020;25:1794. doi: 10.3390/molecules25081794. PubMed DOI PMC

Maniatis T, Fritsch EF, Sambrook J. A laboratory manual. Cold Spring Harbor: Cold Spring Harbor Laboratory; 1982. Molecular cloning; pp. 213–214.

Miguel S, Nisse E, Biteau F, Rottloff S, Mignard B, Gontier E, Hehn A, Bourgaud F. Assessing carnivorous plants for the production of recombinant proteins. Front Plant Sci. 2019;10:793. doi: 10.3389/fpls.2019.00793. PubMed DOI PMC

Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Niazian M. Application of genetics and biotechnology for improving medicinal plants. Planta. 2019;249:953–973. doi: 10.1007/s00425-019-03099-1. PubMed DOI

Nowicka A, Tokarz B, Zwyrtková J, Dvořák Tomaštíková E, Procházková K, Ercan U, Finke E, Rozhon E, Poppenberger E, Otmar M, Niezgodzki I, Krečmerová M, Schubert I, Pecinka A. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant J. 2020;102(1):68–84. doi: 10.1111/tpj.14612. PubMed DOI

Oropeza-Aburto A, Cervantes-Pérez SA, Albert VA, Herrera-Estrella L. Agrobacterium tumefaciens mediated transformation of the aquatic carnivorous plant Utricularia gibba. Plant Methods. 2020;16:50. doi: 10.1186/s13007-020-00592-7. PubMed DOI PMC

Padhye S, Dandawate P, Yusufi M, Ahmad A, Sarkar FH. Perspectives on medicinal properties of plumbagin and its analogs. Med Res Rev. 2010;32:1131–1158. doi: 10.1002/med.20235. PubMed DOI

Piątczak E, Jeleń A, Makowczyńska J, Zielińska S, Kuźma Ł, Balcerczak E. Establishment of hairy root cultures of Rehmannia elata N.E. Brown ex Prain and production of iridoid and phenylethanoid glycosides. Ind Crop Prod. 2019;137:308–314. doi: 10.1016/j.indcrop.2019.05.022. DOI

Putalun W, Udomsin O, Yusakul G, Juengwatanatrakul T, Sakamoto S, Tanaka H. Enhanced plumbagin production from in vitro cultures of Drosera burmanii using elicitation. Biotechnol Lett. 2010;32:721–724. doi: 10.1007/s10529-010-0202-3. PubMed DOI

Swain T, Hillis WE. Phenolic constituents of Prunus domestica. I quantitative analysis of phenolic constituents. J Sci Food Agric. 1959;10:63–68. doi: 10.1002/jsfa.2740100110. DOI

Thiruvengadam M, Praveen N, John KMM, Yang Y, Kim S, Chung I. Establishment of Momordica charantia hairy root cultures for the production of phenolic compounds and determination of their biological activities. Plant Cell Tissue Organ Cult. 2014;118:545–557. doi: 10.1007/s11240-014-0506-4. DOI

Thiruvengadam M, Praveen N, Kim E-H, Kim S-H, Chung I-M. Production of anthraquinones, phenolic compounds and biological activities from hairy root cultures of Polygonum multiflorum Thunb. Protoplasma. 2014;251:555–566. doi: 10.1007/s00709-013-0554-3. PubMed DOI

Tokarz K, Makowski W, Banasiuk R, Królicka A, Piwowarczyk B. Response of Dionaea muscipula J. Ellis to light stress in in vitro: physiological study. Plant Cell Tissue Organ Cult. 2018;134(1):65–77. doi: 10.1007/s11240-018-1400-2. DOI

Tokarz KM, Makowski W, Tokarz B, Hanula M, Sitek E, Muszyńska E, Jędrzejczyk R, Banasiuk R, Chajec Ł, Mazur S. Can Ceylon leadwort (Plumbago zeylanica L.) acclimate to lead toxicity? - studies of photosynthetic apparatus effciency. Int J Mol Sci. 2020;21:1866. doi: 10.3390/ijms21051866. PubMed DOI PMC

Tusevski O, Petreska Stanoeva J, Stefova M, Gadzovska Simic S. Agrobacterium enhances xanthone production in Hypericum perforatum cell suspension. Plant Growth Regul. 2015;76:199–210. doi: 10.1007/s10725-014-9989-6. DOI

Tusevski O, Vinterhalter B, Krstić Milošević D, Soković M, Ćirić A, Vinterhalter D, Zdravković Korać S, Petreska Stanoeva J, Stefova M, Gadzovska Simic S. Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult. 2017;128:589–605. doi: 10.1007/s11240-016-1136-9. DOI

Tusevski O, Petreska Stanoeva J, Stefova M, Spasenoski M, Gadzovska Simic S. State of antioxidant systems and phenolic compounds’ production in Hypericum perforatum L. hairy roots. Acta Physiol Plant. 2019;41:132. doi: 10.1007/s11738-019-2919-5. DOI

Vinterhalter B, Zdravkovic-Korac S, Mitic N, Bohanec B, Vinterhalter D, Savic J (2015) Effect of sucrose on shoot regeneration in Agrobacterium transformed Hypericum perforatum L. roots. Acta Physiol Plant 37:37. 10.1007/s11738-015-1785-z

Wang B, Zhang G, Zhu L, Chen L, Zhang Y. Genetic transformation of Echinacea purpurea with Agrobacterium rhizogenes and bioactive ingredient analysis in transformed cultures. Colloids Surf B Biointerfaces. 2006;53:101–104. doi: 10.1016/j.colsurfb.2006.08.003. PubMed DOI

Wen T, Hao YJ, An XL, Sun HD, Li YR, Chen X, Piao XC, Lian ML. Improvement of bioactive compound accumulation in cell cultures of Orostachys cartilaginous A. Bor. through elicitation with salicylic acid and effect of cell extract on bioactive activity. Ind Crop Prod. 2019;139:111570. doi: 10.1016/j.indcrop.2019.111570. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace