Capture and return of sexual genomes by hybridogenetic frogs provide clonal genome enrichment in a sexual species
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33452404
PubMed Central
PMC7810977
DOI
10.1038/s41598-021-81240-5
PII: 10.1038/s41598-021-81240-5
Knihovny.cz E-zdroje
- MeSH
- analýza hlavních komponent MeSH
- genetické lokusy MeSH
- genom * MeSH
- haploidie MeSH
- mikrosatelitní repetice genetika MeSH
- Rana esculenta genetika MeSH
- Rana ridibunda genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hybridogenesis is a reproductive tool for sexual parasitism. Hybridogenetic hybrids use gametes from their sexual host for their own reproduction, but sexual species gain no benefit from such matings as their genome is later eliminated. Here, we examine the presence of sexual parasitism in water frogs through crossing experiments and genome-wide data. We specifically focus on the famous Central-European populations where Pelophylax esculentus males (hybrids of P. ridibundus and P. lessonae) live with P. ridibundus. We identified a system where the hybrids commonly produce two types of clonal gametes (hybrid amphispermy). The haploid lessonae genome is clonally inherited from generation to generation and assures the maintenance of hybrids through a process, in which lessonae sperm fertilize P. ridibundus eggs. The haploid ridibundus genome in hybrids received from P. ridibundus a generation ago, is perpetuated as clonal ridibundus sperm and used to fertilize P. ridibundus eggs, yielding female P. ridibundus progeny. These results imply animal reproduction in which hybridogenetic taxa are not only sexual parasites, but also participate in the formation of a sexual taxon in a remarkable way. This occurs through a process by which sexual gametes are being captured, converted to clones, and returned to sexual populations in one generation.
Department of Ecology and Evolution University of Lausanne Biophore 1015 Lausanne Switzerland
Department of Ecology and Genetics Evolutionary Biology Norbyvägen 18D 75236 Uppsala Sweden
Private Laboratory Dätwil Hauptstrasse 2 8452 Adlikon Zürich Switzerland
Services in Molecular Biology GmbH Rudolf Breitscheid Str 70 15562 Rüdersdorf Germany
Zobrazit více v PubMed
Schultz RJ. Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am. Nat. 1969;103:605–619. doi: 10.1086/282629. DOI
Beukeboom LW, Vrijenhoek RC. Evolutionary genetics and ecology of sperm-dependent parthenogenesis. J. Evol. Biol. 1998;11:755–782. doi: 10.1007/s000360050117. DOI
Avise JC. Clonality: The Genetics, Ecology, and Evolution of Sexual Abstinence in Vertebrate Animals. Oxford: Oxford University Press; 2008.
Schön I, Martens K, van Dijk P. Lost sex. The Evolutionary Biology of Parthenogenesis. Dordrecht: Springer; 2009.
Mirzaghaderi G, Hörandl E. The evolution of meiotic sex and its alternatives. Proc. R. Soc. B. 2016;283:1838. doi: 10.1098/rspb.2016.1221. PubMed DOI PMC
Unmack PJ, et al. Perspectives on the clonal persistence of presumed ‘ghost’ genomes in unisexual or allopolyploid taxa arising via hybridization. Sci. Rep. 2019;9:4730. doi: 10.1038/s41598-019-40865-3. PubMed DOI PMC
Lavanchy G, Schwander T. Hybridogenesis. Curr. Biol. 2019;29:R9–R11. doi: 10.1016/j.cub.2018.11.046. PubMed DOI
Avise JC, Vrijenhoek RC. Mode of inheritance and variation of mitochondrial DNA in hybridogenetic fishes of the genus Poeciliopsis. Mol. Biol. Evol. 1987;4:514–514.
Mantovani B, Scali V. Hybridogenesis and androgenesis in the stick-insect Bacillus rossius-grandii benazzii (insecta, Phasmatodea) Evolution. 1992;46:783–796. PubMed
Dawley RM. An introduction to unisexual vertebrates. In: Dawley RM, Bogart JP, editors. Evolution and Ecology of Unisexual Vertebrates. Albany: New York State Museum; 1989. pp. 1–18.
Schmidt DJ, Bond NR, Adams M, Hughes JM. Cytonuclear evidence for hybridogenetic reproduction in natural populations of the Australian carp gudgeon (Hypseleotris: Eleotridae) Mol. Ecol. 2011;20:3367–3380. doi: 10.1111/j.1365-294X.2011.05206.x. PubMed DOI
Zaleśna A, et al. Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization. Cytogenet. Genome Res. 2011;134:206–212. doi: 10.1159/000327716. PubMed DOI
Lamatsch DK, Stöck M. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. In: Schön I, Martens K, Dijk P, editors. Lost Sex: The Evolutionary Biology of Parthenogenesis. Netherlands, Dordrecht: Springer; 2009. pp. 399–432.
Suzuki S, Miyake S, Arai K, Munehara H. Unisexual hybrids break through an evolutionary dead end by two-way backcrossing. Evolution. 2019;74(2):392–403. doi: 10.1111/evo.13903. PubMed DOI
Mallet J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 2005;20:229–237. doi: 10.1016/j.tree.2005.02.010. PubMed DOI
Landry CR, Hartl DL, Ranz JM. Genome clashes in hybrids: insights from gene expression. Heredity. 2007;99:483–493. doi: 10.1038/sj.hdy.6801045. PubMed DOI
Haldane JBS. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 1922;12:101–109. doi: 10.1007/BF02983075. DOI
Stebbins GL. The inviability, weakness, and sterility of interspecific hybrids. In: Demerec M, editor. Advances in Genetics. Boston: Academic Press; 1958. pp. 147–215. PubMed
Vrijenhoek RC. Genetic and evolutionary constraints on the origin and establishment of unisexual vertebrates. Evol. Ecol. Unisexual Vertebr. 1989;466:24–31.
Alves MJ, Coelho MM, Collares-Pereira MJ. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica. 2001;111:375–385. doi: 10.1023/A:1013783029921. PubMed DOI
Günther R. Zur Populationsgenetik der mitteleuropäischen Wasserfrösche des Rana esculenta- Synkleptons (Anura, Ranidae) Zool Anz. 1983;211:43–54.
Uzzell T, Günther R, Berger L. Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia Salientia) Proc. Acad. Nat. Sci. Phila. 1977;128:147–171.
Graf JD, Polls Pelaz M. Evolutionary genetics of the Rana esculenta complex. In: Dawley RM, Bogart JP, editors. Evolution and Ecology of Unisexual Vertebrates. Albany: New York State Museum; 1989. pp. 289–302.
Christiansen DG. Gamete types, sex determination and stable equilibria of all-hybrid populations of diploid and triploid edible frogs (Pelophylax esculentus) BMC Evol. Biol. 2009;9:135. doi: 10.1186/1471-2148-9-135. PubMed DOI PMC
Tunner HG. The inheritance of morphology and electrophoretic markers from homotypic crosses of the hybridogenetic Rana esculenta. Mitt. Zool. Mus. Berlin. 1979;55:89–109.
Vorburger C. Non-hybrid offspring from matings between hemiclonal hybrid waterfrogs suggest occasional recombination between clonal genomes. Ecol. Lett. 2001;4:628–636. doi: 10.1046/j.1461-0248.2001.00272.x. DOI
Berger L. Hybrids of B2 generations of European water frogs: Rana Esculenta complex. Ann. Zool. 1976;12:201–214.
Graf JD, Müller WP. Experimental gynogenesis provides evidence of hybridogenetic reproduction in the Rana esculenta complex. Cell. Mol. Life Sci. 1979;35:1574–1576. doi: 10.1007/BF01953200. PubMed DOI
Uzzell T. Introgression and stabilization in western Paleartic species of water frogs. In: Mossakowski D, Roth G, editors. Environmental Adaptation and Evolution. Zorneding: Fischer; 1982. pp. 275–293.
Vorburger C. Fixation of deleterious mutations in clonal lineages: evidence from hybridogenetic frogs. Evolution. 2001;55:2319–2332. doi: 10.1111/j.0014-3820.2001.tb00745.x. PubMed DOI
Guex G-D, Hotz H, Semlitsch RD. Deleterious alleles and differential viability in progeny of natural hemiclonal frogs. Evolution. 2002;56:1036–1044. doi: 10.1111/j.0014-3820.2002.tb01414.x. PubMed DOI
Günther, R. & Plötner, J. Zur Problematik der klonalen Vererbung bei Rana kl. esculenta (Anura). In Beiträge zur Biologie und Bibliografie (1960–1987) der europäischen Wasserfrösche (eds. Günther, R. & Klewen, R.), Jb. Feldherpetologie, Beiheft 1, 23–46 (Ökologie u. Faunistik Germany, 1988).
Plötner J, Grunwald C. A mathematical model of the structure and the dynamics of Rana ridibunda/esculenta-♂ ♂-populations (Anura, Ranidae) J. Zool. Syst. Evol. Res. 1991;29:201–207. doi: 10.1111/j.1439-0469.1991.tb01631.x. DOI
Doležálková M, et al. Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? BMC Genet. 2016;17:100. doi: 10.1186/s12863-016-0408-z. PubMed DOI PMC
Doležálková-Kaštánková M, et al. All-male hybrids of a tetrapod Pelophylax esculentus share its origin and genetics of maintenance. Biol. Sex Differ. 2018;9:13. doi: 10.1186/s13293-018-0172-z. PubMed DOI PMC
Hotz H. Genic Diversity Among Water Frog Genomes Inherited With and Without Recombination. Zurich: Zentralstelle der Studentenschaft; 1983.
Schmeller DS, Seitz A, Crivelli A, Veith M. Crossing species' range borders: interspecies gene exchange mediated by hybridogenesis. Proc. R. Soc. B. 2005;272:1625–1631. doi: 10.1098/rspb.2005.3129. PubMed DOI PMC
Warren WC, et al. Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nat. Ecol. Evol. 2018;2:669. doi: 10.1038/s41559-018-0473-y. PubMed DOI PMC
Berger L, Günther R. Inheritance patterns of water frog males from the environments of nature reserve Steckby, Germany. Zool. Pol. 1991;37:87–100.
Vinogradov AE, Borkin LJ, Günther R, Rosanov JM. Two germ cell lineages with genomes of different species in one and the same animal. Hereditas. 1991;114:245–251. doi: 10.1111/j.1601-5223.1991.tb00331.x. PubMed DOI
Ragghianti M, et al. Gametogenesis of intergroup hybrids of hemiclonal frogs. Genet. Res. 2007;89:39–45. doi: 10.1017/S0016672307008610. PubMed DOI
Biriuk OV, et al. Gamete production patterns and mating systems in water frogs of the hybridogenetic Pelophylax esculentus complex in north-eastern Ukraine. J. Zool. Syst. Evol. Res. 2016;54:215–225. doi: 10.1111/jzs.12132. DOI
Dedukh D, Litvinchuk S, Rosanov J, Shabanov D, Krasikova A. Mutual maintenance of di- and triploid Pelophylax esculentus hybrids in R-E systems: results from artificial crossings experiments. BMC Evol. Biol. 2017;17:220. doi: 10.1186/s12862-017-1063-3. PubMed DOI PMC
Smith MJ, Maynard-Smith J. The Evolution of Sex. Cambridge: Cambridge University Press; 1978.
Rastogi RK, et al. Ovarian activity and reproduction in the frog, Rana esculenta. J. Zool. 1983;200:233–247. doi: 10.1111/j.1469-7998.1983.tb05786.x. DOI
Berger L, Rybacki M, Hotz H. Artificial fertilization of water frogs. Amphib. Reptil. 1994;15:408–413. doi: 10.1163/156853894X00254. DOI
Pruvost NBM, Hoffmann A, Reyer HU. Gamete production patterns, ploidy, and population genetics reveal evolutionary significant units in hybrid water frogs (Pelophylax esculentus) Ecol. Evol. 2013;3:2933–2946. doi: 10.1002/ece3.687. PubMed DOI PMC
Christiansen DG, Reyer H-U. From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution. 2009;63:1754–1768. doi: 10.1111/j.1558-5646.2009.00673.x. PubMed DOI
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE. 2012;7:e37135. doi: 10.1371/journal.pone.0037135. PubMed DOI PMC
Brelsford A, Dufresnes C, Perrin N. High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity. 2016;116:177–181. doi: 10.1038/hdy.2015.83. PubMed DOI PMC
Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 2004;4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x. DOI
Peakall R, Smouse PE. Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol. Ecol. Notes. 2006;6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x. PubMed DOI PMC
Gosselin, T. Radiator: RADseq data exploration, manipulation and visualization using R. R package version 0.0. 5. 2017 (2018).
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol. Ecol. 2013;22:3124–3140. doi: 10.1111/mec.12354. PubMed DOI PMC
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. PubMed PMC
Wang J. The computer program structure for assigning individuals to populations: easy to use but easier to misuse. Mol. Ecol. Res. 2017;17:981–990. doi: 10.1111/1755-0998.12650. PubMed DOI
Jombart T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24:1403–1405. doi: 10.1093/bioinformatics/btn129. PubMed DOI
Zheng X, et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012;28:3326–3328. doi: 10.1093/bioinformatics/bts606. PubMed DOI PMC
Rastas P. Lep-MAP3: robust linkage mapping even for low-coverage whole genome sequencing data. Bioinformatics. 2017;33:3726–3732. doi: 10.1093/bioinformatics/btx494. PubMed DOI
Wu Y, Bhat PR, Close TJ, Lonardi S. Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PloS Genet. 2008;4:e1000212. doi: 10.1371/journal.pgen.1000212. PubMed DOI PMC
Wu, Y., Bhat, P., Close, T. J. & Lonardi, S. Efficient and accurate construction of genetic linkage maps from noisy and missing genotyping data. In WABI (2007). 10.1007/978-3-540-74126-8_37.
Malinsky M, Trucchi E, Lawson DJ, Falush D. RADpainter and fineRADstructure: population inference from RADseq data. Mol. Biol. Evol. 2018;35:1284–1290. doi: 10.1093/molbev/msy023. PubMed DOI PMC
Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PloS Genet. 2012;8:e1002453. doi: 10.1371/journal.pgen.1002453. PubMed DOI PMC
Garner TWJ, Gautschi B, Röthlisberger S, Reyer HU. A set of CA repeat microsatellite markers derived from the pool frog Rana lessonae. Mol. Ecol. 2000;9:2173–2175. doi: 10.1046/j.1365-294X.2000.105311.x. PubMed DOI
Hotz H, et al. Microsatellites: a tool for evolutionary genetic studies of western Palearctic water frogs. Mitt. Mus. Nat.kd. Berl. Zool Reihe. 2001;77:43–50.
Arioli M, Jakob C, Reyer H-U. Genetic diversity in water frog hybrids (Pelophylax esculentus) varies with population structure and geographic location. Mol. Ecol. 2010;19:1814–1828. doi: 10.1111/j.1365-294X.2010.04603.x. PubMed DOI
Zeisset I, Rowe G, Beebee TJC. Polymerase chain reaction primers for microsatellite loci in the north European water frogs Rana ridibunda and R. lessonae. Mol. Ecol. 2000;9:1173–1174. doi: 10.1046/j.1365-294x.2000.00954-2.x. PubMed DOI
Inheritance patterns of male asexuality in hybrid males of a water frog Pelophylax esculentus
Cytogenetics of the Hybridogenetic Frog Pelophylax grafi and Its Parental Species Pelophylax perezi
The high diversity of gametogenic pathways in amphispermic water frog hybrids from Eastern Ukraine