Ecotoxicity and Essential Properties of Fine-Recycled Aggregate
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAIN19205
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33477911
PubMed Central
PMC7833381
DOI
10.3390/ma14020463
PII: ma14020463
Knihovny.cz E-zdroje
- Klíčová slova
- chemical properties, ecotoxicity, recycled concrete aggregate,
- Publikační typ
- časopisecké články MeSH
This article deals with the possibility of utilization of secondary-raw materials as a natural sand replacement in concrete. Four types of waste construction materials were examined-recycled aggregate from four different sources. The natural aggregate was examined as well as used as the reference sample. All the samples were tested to evaluate the water absorption, particle size distribution, and particle density. The basic chemical reactions in the view of ecotoxicology are investigated and measured based on Czech standards. Chemical analysis, Lemna growth inhibition test, freshwater algae, daphnia acute, and mustard germination toxicity test were made and discussed in this paper. Based on the physical and geometrical properties and ecotoxicology of examined waste materials, this work evaluated them as suitable for utilization in concrete as a sand replacement.
Zobrazit více v PubMed
Verian K.P., Ashraf W., Cao Y. Properties of Recycled Concrete Aggregate and Their Influence in New Concrete Production. Resour. Conserv. Recycl. 2018;133:30–49. doi: 10.1016/j.resconrec.2018.02.005. DOI
Evangelista L., Guedes M., de Brito J., Ferro A.C., Pereira M.F. Physical, Chemical and Mineralogical Properties of Fine Recycled Aggregates Made from Concrete Waste. Constr. Build. Mater. 2015;86:178–188. doi: 10.1016/j.conbuildmat.2015.03.112. DOI
Aggregate for Concrete. Czech Office for Standards; Prague, Czech Republic: 2002. [(accessed on 19 January 2021)]. Czech Technical Standard CSN EN 12620+A1. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030152181. (In Czech)
Concrete; Specification, Performance, Production and Conformity. Czech Office for Standards; Prague, Czech Republic: 2018. Czech Technical standard CSN EN 206+A1. (In Czech)
Evangelista L., de Brito J. Concrete with Fine Recycled Aggregates: A Review. Eur. J. Environ. Civ. Eng. 2014;18:129–172. doi: 10.1080/19648189.2013.851038. DOI
Kwan A.K.H., Ng P.L., Huen K.Y. Effects of Fines Content on Packing Density of Fine Aggregate in Concrete. Constr. Build. Mater. 2014;61:270–277. doi: 10.1016/j.conbuildmat.2014.03.022. DOI
Evangelista L., de Brito J. Mechanical Behaviour of Concrete Made with Fine Recycled Concrete Aggregates. Cem. Concr. Compos. 2007;29:397–401. doi: 10.1016/j.cemconcomp.2006.12.004. DOI
Khatib J.M. Properties of Concrete Incorporating Fine Recycled Aggregate. Cem. Concr. Res. 2005;35:763–769. doi: 10.1016/j.cemconres.2004.06.017. DOI
Debieb F., Kenai S. The Use of Coarse and Fine Crushed Bricks as Aggregate in Concrete. Constr. Build. Mater. 2008;22:886–893. doi: 10.1016/j.conbuildmat.2006.12.013. DOI
Yang J., Du Q., Bao Y. Concrete with Recycled Concrete Aggregate and Crushed Clay Bricks. Const. Build. Mater. 2011;25:1935–1945. doi: 10.1016/j.conbuildmat.2010.11.063. DOI
Cachim P.B. Mechanical Properties of Brick Aggregate Concrete. Const. Build. Mater. 2009;23:1292–1297. doi: 10.1016/j.conbuildmat.2008.07.023. DOI
Kobetičová K., Černý R. Ecotoxicology of Building Materials: A Critical Review of Recent Studies. J. Clean. Prod. 2017;165:500–508. doi: 10.1016/j.jclepro.2017.07.161. DOI
Kokkali V., van Delft W. Overview of Commercially Available Bioassays for Assessing Chemical Toxicity in Aqueous Samples. TrAC Trends Anal. Chem. 2014;61:133–155. doi: 10.1016/j.trac.2014.08.001. DOI
Hájek P., Fiala C., Kynčlová M. Life Cycle Assessments of Concrete Structures—A Step towards Environmental Savings. Struct. Concr. 2011;12:13–22. doi: 10.1002/suco.201000026. DOI
Limbachiya M.C., Leelawat T., Dhir R.K. Use of Recycled Concrete Aggregate in High-Strength Concrete. Mat. Struct. 2000;33:574–580. doi: 10.1007/BF02480538. DOI
Guo H., Shi C., Guan X., Zhu J., Ding Y., Ling T.-C., Zhang H., Wang Y. Durability of Recycled Aggregate Concrete—A Review. Cem. Concr. Compos. 2018;89:251–259. doi: 10.1016/j.cemconcomp.2018.03.008. DOI
Mariaková D., Vlach T., Pavlů T. Glass Waste Powder Utilization in High Performance Concrete. Acta Polytech. CTU Proc. 2019;21:24–27. doi: 10.14311/APP.2019.21.0024. DOI
EEA . Effectiveness of Environmental Taxes and Charges for Managing Sand, Gravel and Rock Extraction in Selected EU Countries. European Environmetal Agengy; Copenhaguen, Denmark: 2008.
Pedro D., de Brito J., Evangelista L. Structural Concrete with Simultaneous Incorporation of Fine and Coarse Recycled Concrete Aggregates: Mechanical, Durability and Long-Term Properties. Const. Build. Mater. 2017;154:294–309. doi: 10.1016/j.conbuildmat.2017.07.215. DOI
Fortova K., Pavlu T. The Utilization of the Finest Fraction of Recycled Aggregate from CDW for Concrete. Volume 290 IOP Publishing; Bristol, UK: 2019.
Hennebert P., van der Sloot H.A., Rebischung F., Weltens R., Geerts L., Hjelmar O. Hazard Property Classification of Waste According to the Recent Propositions of the EC Using Different Methods. Waste Manag. 2014;34:1739–1751. doi: 10.1016/j.wasman.2014.05.021. PubMed DOI
Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method. Czech Office for Standards, Metrology and Testing; Prague, Czech Republic: 2012. EN 933-1. (In Czech)
Aggregate for Concrete. Czech Office for Standards; Prague, Czech Republic: 2003. [(accessed on 19 January 2021)]. Czech Technical Standard CSN EN 12620. Available online: http://www.technicke-normy-csn.cz/721502-csn-en-12620_4_67612.html. (In Czech)
Tests for Mechanical and Physical Properties of Aggregates—Part 1: Determination of the Resistance to Wear (Micro-Deva) Czech Office for Standards; Prague, Czech Republic: 2011. Czech Technical Standard CSN EN 1097-1. (In Czech)
Characterization of Waste—Leaching—Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 4: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 10 mm (without or with Size Reduction) CEN; Brussels, Belgium: 2002. European Committee for Standardization EN12457-4.
Water Quality—Fresh Water Algal Growth Inhibition Test with Unicellular Green Algae. ISO; Brussels, Belgium: 2012. ISO 8692.
Bold H.C. The Morphology of Chlamydomonas chlamydogama, Sp. Nov. Bull. Torrey Bot. Club. 1949;76:101–108. doi: 10.2307/2482218. DOI
Wellburn A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI
Water Quality—Determination of Toxic Effect of Water Constituents and Waste to Duckweed (Lemna minor)—Duckweed Growth Inhibition Test. ISO; Brussels, Belgium: 2005. ISO 20079.
Determination of Inhibition of the Mobility of Daphnia magna Straus (Cladocera, Crustacea)—Acute Toxicity Test. ISO; Brussels, Belgium: 2012. ISO 6341.
Klüttgen B., Dülmer U., Engels M., Ratte H.T. ADaM, an Artificial Freshwater for the Culture of Zooplankton. Water Res. 1994;28:743–746. doi: 10.1016/0043-1354(94)90157-0. DOI
Alves A.V., Vieira T.F., de Brito J., Correia J.R. Mechanical Properties of Structural Concrete with Fine Recycled Ceramic Aggregates. Constr. Build. Mater. 2014;64:103–113. doi: 10.1016/j.conbuildmat.2014.04.037. DOI
Uddin M.T., Mahmood A.H., Kamal M.R.I., Yashin S.M., Zihan Z.U.A. Effects of Maximum Size of Brick Aggregate on Properties of Concrete. Const. Build. Mater. 2017;134:713–726. doi: 10.1016/j.conbuildmat.2016.12.164. DOI
Chen H.-J., Yen T., Chen K.-H. Use of Building Rubbles as Recycled Aggregates. Cem. Concr. Res. 2003;33:125–132. doi: 10.1016/S0008-8846(02)00938-9. DOI
Malasarn D., Kropat J., Hsieh S.I., Finazzi G., Casero D., Loo J.A., Pellegrini M., Wollman F.-A., Merchant S.S. Zinc Deficiency Impacts CO2 Assimilation and Disrupts Copper Homeostasis in Chlamydomonas reinhardtii. J. Biol. Chem. 2013;288:10672–10683. doi: 10.1074/jbc.M113.455105. PubMed DOI PMC
Wang W. Site-Specific Barium Toxicity to Common Duckweed, Lemna minor. Aquat. Toxicol. 1988;12:203–212. doi: 10.1016/0166-445X(88)90023-9. DOI
Golding L.A., McKnight K., Binet M., Adams M., Apte S.C. Toxicity of Dissolved and Precipitated Forms of Barium to a Freshwater Alga (Chlorella sp. 12) and Water Flea (Ceriodaphnia dubia) Environ. Toxicol. Chem. 2018;37:1632–1642. doi: 10.1002/etc.4107. PubMed DOI
Kočí V., Mocová K., Kulovaná M., Vosáhlová S. Phytotoxicity Tests of Solid Wastes and Contaminated Soils in the Czech Republic. Environ. Sci. Pollut. Res. 2010;17:611–623. doi: 10.1007/s11356-009-0214-5. PubMed DOI
Choi J.B., Bae S.M., Shin T.Y., Ahn K.Y., Woo S.D. Evaluation of Daphnia magna for the Ecotoxicity Assessment of Alkali Leachate from Concrete. Int. J. Ind. Entomol. 2013;26:41–46. doi: 10.7852/IJIE.2013.26.1.041. DOI
Rodrigues P., Silvestre J.D., Flores-Colen I., Viegas C.A., Ahmed H.H., Kurda R., de Brito J. Evaluation of the Ecotoxicological Potential of Fly Ash and Recycled Concrete Aggregates Use in Concrete. Appl. Sci. 2020;10:351. doi: 10.3390/app10010351. DOI
Mocová K.A., Sackey L.N.A., Renkerová P. Environmental Impact of Concrete and Concrete-Based Construction Waste Leachates; Proceedings of the IOP Conference Series: Earth and Environmental Science; Prague, Czech Republic. 2–4 July 2019.
Barbosa R., Lapa N., Dias D., Mendes B. Concretes Containing Biomass Ashes: Mechanical, Chemical, and Ecotoxic Performances. Const. Build. Mater. 2013;48:457–463. doi: 10.1016/j.conbuildmat.2013.07.031. DOI
Alkali-silica Reaction Elimination Potential of High-Performance Concrete Containing Glass Powder
Waste Glass Powder Reusability in High-Performance Concrete: Leaching Behavior and Ecotoxicity