Ecotoxicity and Essential Properties of Fine-Recycled Aggregate

. 2021 Jan 19 ; 14 (2) : . [epub] 20210119

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33477911

Grantová podpora
LTAIN19205 Ministerstvo Školství, Mládeže a Tělovýchovy

This article deals with the possibility of utilization of secondary-raw materials as a natural sand replacement in concrete. Four types of waste construction materials were examined-recycled aggregate from four different sources. The natural aggregate was examined as well as used as the reference sample. All the samples were tested to evaluate the water absorption, particle size distribution, and particle density. The basic chemical reactions in the view of ecotoxicology are investigated and measured based on Czech standards. Chemical analysis, Lemna growth inhibition test, freshwater algae, daphnia acute, and mustard germination toxicity test were made and discussed in this paper. Based on the physical and geometrical properties and ecotoxicology of examined waste materials, this work evaluated them as suitable for utilization in concrete as a sand replacement.

Zobrazit více v PubMed

Verian K.P., Ashraf W., Cao Y. Properties of Recycled Concrete Aggregate and Their Influence in New Concrete Production. Resour. Conserv. Recycl. 2018;133:30–49. doi: 10.1016/j.resconrec.2018.02.005. DOI

Evangelista L., Guedes M., de Brito J., Ferro A.C., Pereira M.F. Physical, Chemical and Mineralogical Properties of Fine Recycled Aggregates Made from Concrete Waste. Constr. Build. Mater. 2015;86:178–188. doi: 10.1016/j.conbuildmat.2015.03.112. DOI

Aggregate for Concrete. Czech Office for Standards; Prague, Czech Republic: 2002. [(accessed on 19 January 2021)]. Czech Technical Standard CSN EN 12620+A1. Available online: https://shop.bsigroup.com/ProductDetail/?pid=000000000030152181. (In Czech)

Concrete; Specification, Performance, Production and Conformity. Czech Office for Standards; Prague, Czech Republic: 2018. Czech Technical standard CSN EN 206+A1. (In Czech)

Evangelista L., de Brito J. Concrete with Fine Recycled Aggregates: A Review. Eur. J. Environ. Civ. Eng. 2014;18:129–172. doi: 10.1080/19648189.2013.851038. DOI

Kwan A.K.H., Ng P.L., Huen K.Y. Effects of Fines Content on Packing Density of Fine Aggregate in Concrete. Constr. Build. Mater. 2014;61:270–277. doi: 10.1016/j.conbuildmat.2014.03.022. DOI

Evangelista L., de Brito J. Mechanical Behaviour of Concrete Made with Fine Recycled Concrete Aggregates. Cem. Concr. Compos. 2007;29:397–401. doi: 10.1016/j.cemconcomp.2006.12.004. DOI

Khatib J.M. Properties of Concrete Incorporating Fine Recycled Aggregate. Cem. Concr. Res. 2005;35:763–769. doi: 10.1016/j.cemconres.2004.06.017. DOI

Debieb F., Kenai S. The Use of Coarse and Fine Crushed Bricks as Aggregate in Concrete. Constr. Build. Mater. 2008;22:886–893. doi: 10.1016/j.conbuildmat.2006.12.013. DOI

Yang J., Du Q., Bao Y. Concrete with Recycled Concrete Aggregate and Crushed Clay Bricks. Const. Build. Mater. 2011;25:1935–1945. doi: 10.1016/j.conbuildmat.2010.11.063. DOI

Cachim P.B. Mechanical Properties of Brick Aggregate Concrete. Const. Build. Mater. 2009;23:1292–1297. doi: 10.1016/j.conbuildmat.2008.07.023. DOI

Kobetičová K., Černý R. Ecotoxicology of Building Materials: A Critical Review of Recent Studies. J. Clean. Prod. 2017;165:500–508. doi: 10.1016/j.jclepro.2017.07.161. DOI

Kokkali V., van Delft W. Overview of Commercially Available Bioassays for Assessing Chemical Toxicity in Aqueous Samples. TrAC Trends Anal. Chem. 2014;61:133–155. doi: 10.1016/j.trac.2014.08.001. DOI

Hájek P., Fiala C., Kynčlová M. Life Cycle Assessments of Concrete Structures—A Step towards Environmental Savings. Struct. Concr. 2011;12:13–22. doi: 10.1002/suco.201000026. DOI

Limbachiya M.C., Leelawat T., Dhir R.K. Use of Recycled Concrete Aggregate in High-Strength Concrete. Mat. Struct. 2000;33:574–580. doi: 10.1007/BF02480538. DOI

Guo H., Shi C., Guan X., Zhu J., Ding Y., Ling T.-C., Zhang H., Wang Y. Durability of Recycled Aggregate Concrete—A Review. Cem. Concr. Compos. 2018;89:251–259. doi: 10.1016/j.cemconcomp.2018.03.008. DOI

Mariaková D., Vlach T., Pavlů T. Glass Waste Powder Utilization in High Performance Concrete. Acta Polytech. CTU Proc. 2019;21:24–27. doi: 10.14311/APP.2019.21.0024. DOI

EEA . Effectiveness of Environmental Taxes and Charges for Managing Sand, Gravel and Rock Extraction in Selected EU Countries. European Environmetal Agengy; Copenhaguen, Denmark: 2008.

Pedro D., de Brito J., Evangelista L. Structural Concrete with Simultaneous Incorporation of Fine and Coarse Recycled Concrete Aggregates: Mechanical, Durability and Long-Term Properties. Const. Build. Mater. 2017;154:294–309. doi: 10.1016/j.conbuildmat.2017.07.215. DOI

Fortova K., Pavlu T. The Utilization of the Finest Fraction of Recycled Aggregate from CDW for Concrete. Volume 290 IOP Publishing; Bristol, UK: 2019.

Hennebert P., van der Sloot H.A., Rebischung F., Weltens R., Geerts L., Hjelmar O. Hazard Property Classification of Waste According to the Recent Propositions of the EC Using Different Methods. Waste Manag. 2014;34:1739–1751. doi: 10.1016/j.wasman.2014.05.021. PubMed DOI

Tests for Geometrical Properties of Aggregates—Part 1: Determination of Particle Size Distribution—Sieving Method. Czech Office for Standards, Metrology and Testing; Prague, Czech Republic: 2012. EN 933-1. (In Czech)

Aggregate for Concrete. Czech Office for Standards; Prague, Czech Republic: 2003. [(accessed on 19 January 2021)]. Czech Technical Standard CSN EN 12620. Available online: http://www.technicke-normy-csn.cz/721502-csn-en-12620_4_67612.html. (In Czech)

Tests for Mechanical and Physical Properties of Aggregates—Part 1: Determination of the Resistance to Wear (Micro-Deva) Czech Office for Standards; Prague, Czech Republic: 2011. Czech Technical Standard CSN EN 1097-1. (In Czech)

Characterization of Waste—Leaching—Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 4: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 10 mm (without or with Size Reduction) CEN; Brussels, Belgium: 2002. European Committee for Standardization EN12457-4.

Water Quality—Fresh Water Algal Growth Inhibition Test with Unicellular Green Algae. ISO; Brussels, Belgium: 2012. ISO 8692.

Bold H.C. The Morphology of Chlamydomonas chlamydogama, Sp. Nov. Bull. Torrey Bot. Club. 1949;76:101–108. doi: 10.2307/2482218. DOI

Wellburn A.R. The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI

Water Quality—Determination of Toxic Effect of Water Constituents and Waste to Duckweed (Lemna minor)—Duckweed Growth Inhibition Test. ISO; Brussels, Belgium: 2005. ISO 20079.

Determination of Inhibition of the Mobility of Daphnia magna Straus (Cladocera, Crustacea)—Acute Toxicity Test. ISO; Brussels, Belgium: 2012. ISO 6341.

Klüttgen B., Dülmer U., Engels M., Ratte H.T. ADaM, an Artificial Freshwater for the Culture of Zooplankton. Water Res. 1994;28:743–746. doi: 10.1016/0043-1354(94)90157-0. DOI

Alves A.V., Vieira T.F., de Brito J., Correia J.R. Mechanical Properties of Structural Concrete with Fine Recycled Ceramic Aggregates. Constr. Build. Mater. 2014;64:103–113. doi: 10.1016/j.conbuildmat.2014.04.037. DOI

Uddin M.T., Mahmood A.H., Kamal M.R.I., Yashin S.M., Zihan Z.U.A. Effects of Maximum Size of Brick Aggregate on Properties of Concrete. Const. Build. Mater. 2017;134:713–726. doi: 10.1016/j.conbuildmat.2016.12.164. DOI

Chen H.-J., Yen T., Chen K.-H. Use of Building Rubbles as Recycled Aggregates. Cem. Concr. Res. 2003;33:125–132. doi: 10.1016/S0008-8846(02)00938-9. DOI

Malasarn D., Kropat J., Hsieh S.I., Finazzi G., Casero D., Loo J.A., Pellegrini M., Wollman F.-A., Merchant S.S. Zinc Deficiency Impacts CO2 Assimilation and Disrupts Copper Homeostasis in Chlamydomonas reinhardtii. J. Biol. Chem. 2013;288:10672–10683. doi: 10.1074/jbc.M113.455105. PubMed DOI PMC

Wang W. Site-Specific Barium Toxicity to Common Duckweed, Lemna minor. Aquat. Toxicol. 1988;12:203–212. doi: 10.1016/0166-445X(88)90023-9. DOI

Golding L.A., McKnight K., Binet M., Adams M., Apte S.C. Toxicity of Dissolved and Precipitated Forms of Barium to a Freshwater Alga (Chlorella sp. 12) and Water Flea (Ceriodaphnia dubia) Environ. Toxicol. Chem. 2018;37:1632–1642. doi: 10.1002/etc.4107. PubMed DOI

Kočí V., Mocová K., Kulovaná M., Vosáhlová S. Phytotoxicity Tests of Solid Wastes and Contaminated Soils in the Czech Republic. Environ. Sci. Pollut. Res. 2010;17:611–623. doi: 10.1007/s11356-009-0214-5. PubMed DOI

Choi J.B., Bae S.M., Shin T.Y., Ahn K.Y., Woo S.D. Evaluation of Daphnia magna for the Ecotoxicity Assessment of Alkali Leachate from Concrete. Int. J. Ind. Entomol. 2013;26:41–46. doi: 10.7852/IJIE.2013.26.1.041. DOI

Rodrigues P., Silvestre J.D., Flores-Colen I., Viegas C.A., Ahmed H.H., Kurda R., de Brito J. Evaluation of the Ecotoxicological Potential of Fly Ash and Recycled Concrete Aggregates Use in Concrete. Appl. Sci. 2020;10:351. doi: 10.3390/app10010351. DOI

Mocová K.A., Sackey L.N.A., Renkerová P. Environmental Impact of Concrete and Concrete-Based Construction Waste Leachates; Proceedings of the IOP Conference Series: Earth and Environmental Science; Prague, Czech Republic. 2–4 July 2019.

Barbosa R., Lapa N., Dias D., Mendes B. Concretes Containing Biomass Ashes: Mechanical, Chemical, and Ecotoxic Performances. Const. Build. Mater. 2013;48:457–463. doi: 10.1016/j.conbuildmat.2013.07.031. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...