Waste Glass Powder Reusability in High-Performance Concrete: Leaching Behavior and Ecotoxicity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34443001
PubMed Central
PMC8401728
DOI
10.3390/ma14164476
PII: ma14164476
Knihovny.cz E-zdroje
- Klíčová slova
- ecotoxicity, high-performance concrete, leachate, waste glass powder,
- Publikační typ
- časopisecké články MeSH
This paper deals with the possibility of using different types of waste glass powder in high-performance concrete (HPC) mixtures as a fine fraction replacement. Subsequently, both fractions are used in this research in concrete as a substitute for fine sand and silica flour. To use waste glass in a basic building material such as concrete, it is necessary to verify the basic chemical properties of the selected waste materials. Apart from the basic chemical properties, its environmental impact also appears to be an essential property of waste materials in general. Therefore, the research is mainly focused on the leaching and ecotoxicity experiments on high-performance concrete. HPC mixtures are designed based on the results of the analyzed chemical properties and previous research performed by our research team. Ecotoxicity of these concretes is then verified using Czech standards to evaluate. The results showed a positive impact on the ecotoxic properties of waste glass when used in concrete. A new ecotoxicity classification of waste materials and concrete mixes containing waste materials is proposed as a result of this research and summarized in the conclusion of this paper.
Zobrazit více v PubMed
GREEN Solution s.r.o. Green Solution s.r.o. Program Předcházení Vzniku Odpadu. Ministry of the Environment; Prague, Czech Republic: 2017.
Zeiler E. Výroba Skla a Recyklace Skleněného Odpadu. Vsoká Škola Báňská-Technická Univerzita; Ostrava, Czech Republic: 2011.
Mariaková D., Pavlů T. Možnosti Využití Odpadního Skla a Keramiky Do Betonu; Proceedings of the Recyklace a využití stavebních odpadů jako druhotných surovin; Brno, Czech Republic. 4–5 April 2019; pp. 68–74.
Granata G., Pagnanelli F., Moscardini E., Havlik T., Toro L. Recycling of photovoltaic panels by physical operations. Sol. Energy Mater. Sol. Cells. 2014;123:239–248. doi: 10.1016/j.solmat.2014.01.012. DOI
Yilbas B.S., Ali H., Khaled M.M., Al-Aqeeli N., Abu-Dheir N., Varanasi K.K. Influence of dust and mud on the optical, chemical and mechanical properties of a pv protective glass. Sci. Rep. 2015;5:15833. doi: 10.1038/srep15833. PubMed DOI PMC
Schneider M., Romer M., Tschudin M., Bolio H. Sustainable cement production—Present and future. Cem. Concr. Res. 2011;41:642–650. doi: 10.1016/j.cemconres.2011.03.019. DOI
Cyr M., Lawrence P., Ringot E. Mineral admixtures in mortars: Quantification of the physical effects of inert materials on short-term hydration. Cem. Concr. Res. 2005;35:719–730. doi: 10.1016/j.cemconres.2004.05.030. DOI
Oey T., Kumar A., Bullard J.W., Neithalath N., Sant G. The Filler Effect: The Influence of Filler Content and Surface Area on Cementitious Reaction Rates. J. Am. Ceram. Soc. 2013;96:1978–1990. doi: 10.1111/jace.12264. DOI
Bentz D.P., Ferraris C.F., Jones S.Z., Lootens D., Zunino F. Limestone and silica powder replacements for cement: Early-age performance. Cem. Concr. Compos. 2017;78:43–56. doi: 10.1016/j.cemconcomp.2017.01.001. PubMed DOI PMC
Mazloom M., Ramezanianpour A., Brooks J. Effect of silica fume on mechanical properties of high-strength concrete. Cem. Concr. Compos. 2004;26:347–357. doi: 10.1016/S0958-9465(03)00017-9. DOI
Khedr S.A., Abou-Zeid M.N. Characteristics of Silica-Fume Concrete. J. Mater. Civ. Eng. 1994;6:357–375. doi: 10.1061/(ASCE)0899-1561(1994)6:3(357). DOI
Yogendran V., Langan B.W., Haque M.N., Ward M.A. Silica fume in high-strength concrete. ACI Mater. J. 1987;84 doi: 10.14359/1848. DOI
Siddique R. Utilization of silica fume in concrete: Review of hardened properties. Resour. Conserv. Recycl. 2011;55:923–932. doi: 10.1016/j.resconrec.2011.06.012. DOI
Malhotra V.M., Carrete G.G. Silica Fume. Concr. Constr. 1982;27:443–446.
Malhotra V.M., Ramachandran V.S., Feldman R.F., Aïtcin P.-C. Condensed Silica Fume in Concrete. 1st ed. CRC Press; Boca Raton, FL, USA: 2018.
Mariaková D. Master’s Thesis. CTU in Prague; Prague, Czech Republic: 2018. Glass Powder Waste Utilization in High Preformance Concrete.
Hájek P., Fiala C., Kynčlová M. Life cycle assessments of concrete structures—A step towards environmental savings. Struct. Concr. 2011;12:13–22. doi: 10.1002/suco.201000026. DOI
Kobetičová K., Černý R. Ecotoxicology of building materials: A critical review of recent studies. J. Clean. Prod. 2017;165:500–508. doi: 10.1016/j.jclepro.2017.07.161. DOI
CEN (European Committee for Standardization) Characterization of Waste—Leaching-Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 4: One Stage Batch Test at a Liquid to Solid Ratio of 10 I/Kg for Materials with Particle Size below 10 Mm (without or with Size Reduction) CEN; Brussels, Belgium: 2002. EN12457-4:2002.
ISO (International Organisation for Standardization) Water Quality—Determination of Toxic Effect of Water Constituents and Waste to Duckweed (Lemna Minor)—Duckweed Growth Inhibition Test. ISO; Brussels, Belgium: 2005. ISO 20079:2005.
ISO (International Organisation for Standardization) Determination of Inhibition of the Mobility of Daphnia Magna Straus (Cladocera, Crustacea)—Acute Toxicity Test. ISO; Brussels, Belgium: 2012. ISO 6341:2012.
ISO (International Organisation for Standardization) Water Quality—Fresh Water Algal Growth Inhibition Test with Unicellular Green Algae. ISO; Brussels, Belgium: 2012. ISO 8692:2012.
Mariaková D., Vlach T., Pavlů T. Glass waste powder utilization in high performance concrete. Acta Polytech. CTU Proc. 2019;21:24–27. doi: 10.14311/APP.2019.21.0024. DOI
Shao Y., Lefort T., Moras S., Rodriguez D. Studies on concrete containing ground waste glass. Cem. Concr. Res. 2000;30:91–100. doi: 10.1016/S0008-8846(99)00213-6. DOI
Shayan A., Xu A. Value-added utilisation of waste glass in concrete. Cem. Concr. Res. 2004;34:81–89. doi: 10.1016/S0008-8846(03)00251-5. DOI
Topçu I.B., Canbaz M. Properties of concrete containing waste glass. Cem. Concr. Res. 2004;34:267–274. doi: 10.1016/j.cemconres.2003.07.003. DOI
Jani Y., Hogland W. Waste glass in the production of cement and concrete—A review. J. Environ. Chem. Eng. 2014;2:1767–1775. doi: 10.1016/j.jece.2014.03.016. DOI
Lukášek K. Stav Fotovoltaiky v České Republice. Vysoké učení technické v Brně; Brno, Germany: 2015.
Novak T., Snobl J., Sokansky K. Photovoltaic Power Plants in Terms of Investment Costs and Payback in the Czech Republic; Proceedings of the 2011 10th International Conference on Environment and Electrical Engineering; Rome, Italy. 8–11 May 2011; pp. 1–3.
Mariaková D., Mocová K.A., Fořtová K., Ryparová P., Pešta J., Pavlů T. Ecotoxicity and Essential Properties of Fine-Recycled Aggregate. Materials. 2021;14:463. doi: 10.3390/ma14020463. PubMed DOI PMC
Ebert D., Zschokke-Rohringer C.D., Carius H.J. Within- and between-population variation for resistance of Daphnia magna to the bacterial endoparasite Pasteuria ramosa. Proc. R. Soc. B Biol. Sci. 1998;265:2127–2134. doi: 10.1098/rspb.1998.0549. DOI
Bold H.C. The Morphology of Chlamydomonas chlamydogama, Sp. Nov. Bull. Torrey Bot. Club. 1949;76:101. doi: 10.2307/2482218. DOI
Wellburn A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2. DOI
Vyhláška o Katalogu Odpadů a Posuzování Vlastností Odpadů (Katalog Odpadů), Česká Republika. Directive 8/2021, 2021. [(accessed on 4 August 2021)]; Available online: https://www.zakonyprolidi.cz/cs/2021-8.
Knauer K., Behra R., Sigg L. Effects of free Cu2+ and Zn2+ ions on growth and metal accumulation in freshwater algae. Environ. Toxicol. Chem. 1997;16:220–229. doi: 10.1002/etc.5620160218. DOI
Chakraborty P., Acharyya T., Babu P.V.R., Bandyopadhyay D. Impact of salinity and pH on phytoplankton communities in a tropical freshwater system: An investigation with pigment analysis by HPLC. J. Environ. Monit. 2011;13:614–620. doi: 10.1039/c0em00333f. PubMed DOI
Mocová K.A., Sackey L.N.A., Renkerová P. Environmental Impact of Concrete and Concrete-Based Construction Waste Leachates. IOP Conf. Ser. Earth Environ. Sci. 2019;290:012023. doi: 10.1088/1755-1315/290/1/012023. DOI
Kočí V., Mocová K., Kulovaná M., Vosáhlová S. Phytotoxicity tests of solid wastes and contaminated soils in the Czech Republic. Environ. Sci. Pollut. Res. 2009;17:611–623. doi: 10.1007/s11356-009-0214-5. PubMed DOI
Yajun J., Cahyadi J.H. Simulation of silica fume blended cement hydration. Mater. Struct. 2004;37:397–404. doi: 10.1007/BF02479636. DOI
Mutafela R.N., Lopez E.G., Dahlin T., Kaczala F., Marques M., Jani Y., Hogland W. Geophysical investigation of glass ‘hotspots’ in glass dumps as potential secondary raw material sources. Waste Manag. 2020;106:213–225. doi: 10.1016/j.wasman.2020.03.027. PubMed DOI
Liu T., Wei H., Zou D., Zhou A., Jian H. Utilization of waste cathode ray tube funnel glass for ultra-high performance concrete. J. Clean. Prod. 2020;249:119333. doi: 10.1016/j.jclepro.2019.119333. DOI
Biavati A., Amadei P., Ferrarini A. Significance of Aluminium Release from Type I Borosilicate.Glass Containers. Die Pharm. Ind. 2010;72:2144–2147.
Ogawa T., Miyajima M., Wakiyama N., Terada K. Aluminum elution and precipitation in glass vials: Effect of pH and buffer species. Drug Dev. Ind. Pharm. 2013;41:315–321. doi: 10.3109/03639045.2013.859154. PubMed DOI
Okamoto A., Yamamuro M., Tatarazako N. Acute toxicity of 50 metals to Daphnia magna. J. Appl. Toxicol. 2014;35:824–830. doi: 10.1002/jat.3078. PubMed DOI
Driscoll C.T., Schecher W.D. The chemistry of aluminum in the environment. Environ. Geochem. Health. 1990;12:28–49. doi: 10.1007/BF01734046. PubMed DOI
Quiroz-Vázquez P., Sigee D., White K. Bioavailability and toxicity of aluminium in a model planktonic food chain (Chlamydomonas–Daphnia) at neutral pH. Limnol. Ecol. Manag. Inland Waters. 2010;40:269–277. doi: 10.1016/j.limno.2009.10.007. DOI
Kiventerä J., Perumal P., Yliniemi J., Illikainen M. Mine tailings as a raw material in alkali activation: A review. Int. J. Miner. Met. Mater. 2020;27:1009–1020. doi: 10.1007/s12613-020-2129-6. DOI
Lu Y., Tian A., Zhang J., Tang Y., Shi P., Tang Q., Huang Y. Physical and Chemical Properties, Pretreatment, and Recycling of Municipal Solid Waste Incineration Fly Ash and Bottom Ash for Highway Engineering: A Literature Review. Adv. Civ. Eng. 2020;2020:8886134. doi: 10.1155/2020/8886134. DOI
Shi H.-S., Kan L.-L. Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete. J. Hazard. Mater. 2009;164:750–754. doi: 10.1016/j.jhazmat.2008.08.077. PubMed DOI
Alkali-silica Reaction Elimination Potential of High-Performance Concrete Containing Glass Powder