Alkali-silica Reaction Elimination Potential of High-Performance Concrete Containing Glass Powder
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS21/096/OHK1/2T/11
Influence of chemical properties on the use of waste materials in concrete applications.
PubMed
36233915
PubMed Central
PMC9571633
DOI
10.3390/ma15196574
PII: ma15196574
Knihovny.cz E-zdroje
- Klíčová slova
- alkali-silica reaction, glass powder, high-performance concrete, recycling,
- Publikační typ
- časopisecké články MeSH
This study is mainly concerned with the assumption that glass powder can eliminate the potential alkali-silica reaction in high performance concrete. Glass is often land filled, produced as a secondary raw material or as a by-product of production. Chemical analyses were carried out, and the ecotoxicity of the material was investigated, serving as a basis for testing a potential alkali-silica reaction. High performance concrete (HPC) containing different types of waste powder (secondary raw material from production (SGP), jewelry production (SGJ), container waste glass (CWG), and glass from used photovoltaic panels (GPP)) are tested according to the international standard ASTM C1260 and the Czech technical condition TP 137. Newly designed mixtures are innocuous from the ASR point of view in the most cases, except SGP HPC.
Zobrazit více v PubMed
Mariaková D., Jirkalová Z., Fořtová K., Pavlů T., Hájek P. Proceedings of the AIP Conference Proceedings. AIP Publishing LLC; Melville, NY, USA: 2021. Potential Alkali-Silica Reaction in Recycled Concrete; p. 020029.
Mariaková D., Mocová K.A., Fořtová K., Pavlů T., Hájek P. Waste Glass Powder Reusability in High-Performance Concrete: Leaching Behavior and Ecotoxicity. Materials. 2021;14:4476. doi: 10.3390/ma14164476. PubMed DOI PMC
Mariaková D., Mocová K.A., Fořtová K., Ryparová P., Pešta J., Pavlů T. Ecotoxicity and Essential Properties of Fine-Recycled Aggregate. Materials. 2021;14:463. doi: 10.3390/ma14020463. PubMed DOI PMC
Mariaková D., Mocová K.A., Pešta J., Fořtová K., Tripathi B., Pavlů T., Hájek P. Ecotoxicity of Concrete Containing Fine-Recycled Aggregate: Effect on Photosynthetic Pigments, Soil Enzymatic Activity and Carbonation Process. Sustainability. 2022;14:1732. doi: 10.3390/su14031732. DOI
Mariaková D., Vlach T., Pavlů T. Glass Waste Powder Utilization in High-Performance Concrete. Acta Polytech. CTU Proc. 2019;21:24–27. doi: 10.14311/APP.2019.21.0024. DOI
Mariaková D., Fořtová K., Jirkalová Z., Pavlů T., Hájek P. High-Performance Concrete Containing Waste Vitrified Tiles. APP. 2022;33:357–362. doi: 10.14311/APP.2022.33.0357. DOI
Mariaková D., Pavlů T. Možnosti Využití Odpadního Skla a Keramiky Do Betonu; Proceedings of the Recyklace a Využití Stavebních Odpadů Jako Druhotných Surovin; Brno, Czech Republic. 4–5 April 2019; pp. 68–74.
de Brito J., Kurda R. The Past and Future of Sustainable Concrete: A Critical Review and New Strategies on Cement-Based Materials. J. Clean. Prod. 2021;281:123558. doi: 10.1016/j.jclepro.2020.123558. DOI
Şanal İ. Discussion on the Effectiveness of Cement Replacement for Carbon Dioxide (CO2) Emission Reduction in Concrete: Original Research Articles: Discussion on the Effectiveness of Cement Replacement for Carbon Dioxide (CO2) Emission Reduction. Greenh. Gases: Sci. Technol. 2018;8:366–378. doi: 10.1002/ghg.1748. DOI
Aslani F., Ma G., Yim Wan D.L., Muselin G. Development of High-Performance Self-Compacting Concrete Using Waste Recycled Concrete Aggregates and Rubber Granules. J. Clean. Prod. 2018;182:553–566. doi: 10.1016/j.jclepro.2018.02.074. DOI
Amin M., Tayeh B.A., Agwa I.S. Effect of Using Mineral Admixtures and Ceramic Wastes as Coarse Aggregates on Properties of Ultrahigh-Performance Concrete. J. Clean. Prod. 2020;273:123073. doi: 10.1016/j.jclepro.2020.123073. DOI
Kumari S., Agarwal S., Khan S. Micro/Nano Glass Pollution as an Emerging Pollutant in near Future. J. Hazard. Mater. Adv. 2022;6:100063. doi: 10.1016/j.hazadv.2022.100063. DOI
Dabbaghi F., Sadeghi-Nik A., Libre N.A., Nasrollahpour S. Characterizing Fiber Reinforced Concrete Incorporating Zeolite and Metakaolin as Natural Pozzolans. Structures. 2021;34:2617–2627. doi: 10.1016/j.istruc.2021.09.025. DOI
Winder C., Carmody M. The Dermal Toxicity of Cement. Toxicol. Ind. Health. 2002;18:321–331. doi: 10.1191/0748233702th159oa. PubMed DOI
Stanton T.E. Influence of cement and aggregate on concrete expansion. Eng. News-Record. 1940;124:171–173.
Chatterji S. Chemistry of Alkali–Silica Reaction and Testing of Aggregates. Cem. Concr. Compos. 2005;27:788–795. doi: 10.1016/j.cemconcomp.2005.03.005. DOI
ASTM International; West Conshohocken, PA, USA: 2014. American Society for Testing and Materials: Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method)
British Standards Institution; London, UK: 1999. Method for Determination of Alkali-Silica Reactivity, Concrete Prism Method.
Technický a Zkušební Ústav Stavební v Praze; Prague, Czech Republic: 1968. Stanovení Reaktivnosti Kameniva s Alkáliemi.
Dhir R.K., Dyer T.D., Tang M.C. Alkali-Silica Reaction in Concrete Containing Glass. Mater Struct. 2009;42:1451–1462. doi: 10.1617/s11527-008-9465-8. DOI
Zheng K. Pozzolanic Reaction of Glass Powder and Its Role in Controlling Alkali–Silica Reaction. Cem. Concr. Compos. 2016;67:30–38. doi: 10.1016/j.cemconcomp.2015.12.008. DOI
Bulteel D., Garcia-Diaz E., Vernet C., Zanni H. Alkali–Silica Reaction. Cem. Concr. Res. 2002;32:1199–1206. doi: 10.1016/S0008-8846(02)00759-7. DOI
Thomas M. The Effect of Supplementary Cementing Materials on Alkali-Silica Reaction: A Review. Cem. Concr. Res. 2011;41:1224–1231. doi: 10.1016/j.cemconres.2010.11.003. DOI
Breitenbücher R. Alkalicko-Křemičitá Reakce—Důsledky pro Cementobetonové Kryt. Str. Autob. 2006:205–209.
Ministerstvo dopravy; Prague, Czech Republic: 2016. Vyloučení Alkalické Reakce Kameniva v Betonu Na Stavbách Pozemních Komunikací.
Mariaková D. Ph.D. Thesis. CTU in Prague; Prague, Czech Republic: 2018. Glass Powder Waste Utilization in High Performance Concrete.
CEN; Brussels, Belgium: 2002. Characterization of Waste—Leaching-Compliance Test for Leaching of Granular Waste Materials and Sludges—Part 4: One Stage Batch Test at a Liquid to Solid Ratio of 10 I/Kg for Materials with Particle Size below 10 Mm (without or with Size Reduction)
DAfStb—Richtlinie: Vorbeugende Massnahmen Gegen Schädigende Alkalireaktion Im Beton (Alkali–Richtlinie). Ausgabe Februar 2007—Berichtigung: April 2010. [(accessed on 13 October 2011)]. Available online: https://www.stb-pruefinstitut.de/sites/default/files/download/2011_04_13%20Vortrag%202_AKR.pdf.
Mariaková D., Jirkalová Z., Řepka J., Vlach T., Hájek P. Proceedings of the Sborník Příspěvků 16. KONFERENCE SPECIÁLNÍ BETONY. SKURKON; Žár nad Sázavou, Česká Republika: Využití odpadního skla z fotovoltaických panelů ve vysokohodnotném betonu; pp. 25–30.
McCarthy M.J., Dhir R.K., Halliday J.E., Wibowo A. Role of PFA Quality and Conditioning in Minimising Alkali–Silica Reaction in Concrete. Mag. Concr. Res. 2006;58:49–61. doi: 10.1680/macr.2006.58.1.49. DOI
Lindgård J., Rodum E., Pedersen B. Alkali-Silica Reactions in Concrete—Relationship between Water Content and Observed Damage on Structures. ACI International; Farmington Hills, MI, USA: 2006.
Relling R.H. Ph.D. Thesis. Norwegian University of Science and Technology; Trondheim, Norway: 1999. Coastal Concrete Bridges: Moisture State, Chloride Permeability and Aging Effects.
Pan J.W., Feng Y.T., Wang J.T., Sun Q.C., Zhang C.H., Owen D.R.J. Modeling of Alkali-Silica Reaction in Concrete: A Review. Front. Struct. Civ. Eng. 2012;6:1–18. doi: 10.1007/s11709-012-0141-2. DOI
Dent Glasser L.S., Kataoka N. On the Role of Calcium in the Alkali-Aggregate Reaction. Cem. Concr. Res. 1982;12:321–331. doi: 10.1016/0008-8846(82)90080-1. DOI
Zhuang Y., Qian C., Xu W. Calculation of Alkali Silica Reaction (ASR) Induced Expansion before Cracking of Concrete. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 2013;28:110–116. doi: 10.1007/s11595-013-0650-4. DOI
Qian C., Zhuang Y., Huang H. Numerical Calculation of Expansion Induced by Alkali Silica Reaction. Constr. Build. Mater. 2016;103:117–122. doi: 10.1016/j.conbuildmat.2015.11.041. DOI