The Effect of Complex Modification on the Impedance of Cement Matrices
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-53-26011
Russian Foundation for Basic Research
19-53-26011
Czech Science Foundation
PubMed
33498937
PubMed Central
PMC7865221
DOI
10.3390/ma14030557
PII: ma14030557
Knihovny.cz E-zdroje
- Klíčová slova
- cement binders, complex modification, impedance, morphology, multiwall nanotubes, structure,
- Publikační typ
- časopisecké články MeSH
The research results presented in this article were obtained by joint scientific research on creatingcement materials with reduced impedance. It is known that functional additives added to impart electrically conductive properties have a negative impact on physical and mechanical characteristics of the material. This study suggests using the multiwall carbon nanotubes in the amount of 7% from binder mass as a functional additive. The results obtained prove that the addition of this amount of the modifier does not lead to a significant decrease of strength characteristics. Calcium nitrate in the amount of 1-7% was added in order to level the strength loss and to ensure the effective stable electrical conductivity. The multifunctionality of using this salt has been proven, which is manifested in the anti-frost and anticorrosive effects as well in enhancement of electrical conductivity. The optimal composition of the additive with 7% of carbon nanotubes and 3% of calcium nitrate ensures a reduced electrical impedance of cement matrix. The electrical conductivity was 2440 Ohm, while the decrease of strength properties was within 10% in comparison tothe control sample. The nature of changes in the microstructure were studied to determine the influence of complex modifications that showed significant changes in the morphology of the hydration products. The optimum electrical characteristics of cementitious materials are provided due to the uniform distribution of carbon nanotubes and the formation of a network of interconnected micropores filled with the solution of calcium nitrate that provides additional and stable electrical conductivity over time.
Zobrazit více v PubMed
Cruz A.M., Javier P. Self-compacted concrete with self-protection and self-sensing functionality for energy infrastructures. Materials. 2020;13:1106. doi: 10.3390/ma13051106. PubMed DOI PMC
Rovnaník P., Kusák I., Bayer P., Schmid P., Fiala L. Electrical and Self-Sensing Properties of Alkali-Activated Slag Composite with Graphite Filler. Materials. 2019;12:1616. doi: 10.3390/ma12101616. PubMed DOI PMC
Hong S.-H., Yuan T.-F., Choi J.-S., Yoon Y.-S. Effects of Steelmaking Slag and Moisture on Electrical Properties of Concrete. Materials. 2020;13:2675. doi: 10.3390/ma13122675. PubMed DOI PMC
Anwar M.S., Suitha B., Vedalakshmi R. Light-weight cementitious anode for impressed current cathodic protection of steel reinforced concrete application. Constr. Build. Mater. 2014;71:167–180. doi: 10.1016/j.conbuildmat.2014.08.032. DOI
Bernatskii A.F., Tselebrovskii I.U.N., Chunchin V.A. Electrical Properties of Concrete. Moscow Energiya; Moscow, Russia: 1980. p. 208.
Sassani A., Ceylan H., Kim S., Arabzadeh A., Taylor P., Gopalakrishnan K. Development of Carbon Fiber-modified Electrically Conductive Concrete for Implementation in Des Moines International Airport. Case Stud. Constr. Mater. 2018;8:277–291. doi: 10.1016/j.cscm.2018.02.003. DOI
Wu J., Liu J., Yang F. Three-phase composite conductive concrete for pavement deicing. Constr. Build. Mater. 2015;75:129–135. doi: 10.1016/j.conbuildmat.2014.11.004. DOI
Sandrolini L., Reggiani U., Ogunsola A. Modelling the electrical properties of concrete for shielding effectiveness prediction. J. Phys. D Appl. Phys. 2007;40:5366–5372. doi: 10.1088/0022-3727/40/17/053. DOI
Bernatskii A.F. Electrical Insulating Concrete. Properties, Technology, Application Concrete and Reinforced Concrete in the Third Millennium; Proceedings of the International Scientific and Practical Conference; Rostov-on-Don, Russia. 3 March 2000; pp. 81–89.
Dehghanpour H., Yilmaz K., Ipek M. Evaluation of recycled nano carbon black and waste erosion wires in electrically conductive concretes. Constr. Build. Mater. 2019;221:109–121. doi: 10.1016/j.conbuildmat.2019.06.025. DOI
Demircilioğlu E., Teomete E., Schlangen E., Baeza F.J. Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete. Constr. Build. Mater. 2019;224:420–427. doi: 10.1016/j.conbuildmat.2019.07.091. DOI
Konsta-Gdoutos M.S., Metaxa Z.S., Shah S.P. Highly dispersed carbon nanotube reinforced cement based materials. Cem. Concr. Res. 2010;40:1052–1059. doi: 10.1016/j.cemconres.2010.02.015. DOI
Babushkin V.I. Physical and Chemical Processes of Corrosion of Concrete and Reinforced Concrete. Moscow Stroyizdat; Moscow, Russia: 1968. p. 187.
Hornbostel K., Larsen C.K., Geiker M.R. Relationship between concrete resistivity and corrosion rate—A literature review. Cem. Concr. Compos. 2013;39:60–72. doi: 10.1016/j.cemconcomp.2013.03.019. DOI
SibNIIE. Nauk SSSR; Novosibirsk, Russia: 1964. Electrical concrete.343p
Urkhanova L.A., Buyantuev S.L., Urkhanova A.A., Lkhasaranov S.A., Ardashova G.R., Fediuk R.S., Svintsov A.P., Ivanov I.A. Mechanical and electrical properties of concrete modified by carbon nanoparticles. Mag. Civ. Eng. 2019;8:163. doi: 10.18720/MCE.92.14. DOI
Chiarello M., Zinno R. Electrical conductivity of self-monitoring CFRC. Cem. Concr. Compos. 2005;27:463–469. doi: 10.1016/j.cemconcomp.2004.09.001. DOI
Jung M., Lee Y.-S., Hong S.-G., Moon J. Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): Dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE) Cem. Concr. Res. 2020;131:106017. doi: 10.1016/j.cemconres.2020.106017. DOI
Song X.-B., Shang S., Chen D., Gu X. Multi-walled carbon nanotube reinforced mortar-aggregate interfacial properties. Constr. Build. Mater. 2017;133:57–64. doi: 10.1016/j.conbuildmat.2016.12.034. DOI
Chaipanich A., Nochaiya T., Wongkeo W., Torkittikul P. Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Mater. Sci. Eng. A. 2010;527:1063–1067. doi: 10.1016/j.msea.2009.09.039. DOI
Szeląg M. Mechano-Physical Properties and Microstructure of Carbon Nanotube Reinforced Cement Paste after Thermal Load. Nanomaterials. 2017;7:267. doi: 10.3390/nano7090267. PubMed DOI PMC
Li G.Y., Wang P.M., Zhao X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon. 2005;43:1239–1245. doi: 10.1016/j.carbon.2004.12.017. DOI
Chung D.L.L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 2001;39:279–285. doi: 10.1016/S0008-6223(00)00184-6. DOI
El-Dieb A.S., El-Ghareeb M.A., Abdel-Rahman M.A., Nasr E.S.A. Multifunctional electrically conductive concrete using different fillers. J. Build. Eng. 2018;15:61–69. doi: 10.1016/j.jobe.2017.10.012. DOI
Monteiro A.O., Cachim P.B., Costa P.M.F.J. Electrical Properties of Cement-based Composites Containing Carbon Black Particles. Mater. Today Proc. 2015;2:193–199. doi: 10.1016/j.matpr.2015.04.021. DOI
Yakovlev G.I., Grakhov V.P., Gordina A.F., Shaibadullina A.V., Saidova Z.S., Nikitina S.V., Begunova E.V., Elrefai A.E.M. Effect of Dispersions of Technical Carbon on Properties of Fine Concrete. Stroit. Mater. 2018;762:89–92. doi: 10.31659/0585-430X-2018-762-8-89-92. DOI
García Á., Schlangen E., van de Ven M., Liu Q. Electrical conductivity of asphalt mortar containing conductive fibers and fillers. Constr. Build. Mater. 2009;23:3175–3181. doi: 10.1016/j.conbuildmat.2009.06.014. DOI
Koleva D.A., Copuroglu O., van Breugel K., Ye G., de Wit J.H.W. Electrical resistivity and microstructural properties of concrete materials in conditions of current flow. Cem. Concr. Compos. 2008;30:731–744. doi: 10.1016/j.cemconcomp.2008.04.001. DOI
Gao D., Sturm M., Mo Y.L. Electrical resistance of carbon-nanofiber concrete. Smart Mater. Struct. 2009;18:049501. doi: 10.1088/0964-1726/18/9/095039. DOI
Kičaitė A., Skripkiūnas G., Pundienė I. The effect of calcium nitrate on the properties of portland cement pastes and concrete hardening at low temperatures. Ceram. Silikáty. 2020;64:263–270. doi: 10.13168/cs.2020.0015. DOI
Justnes H., Nygaard E.C. The mechanism of calcium nitrate as set accelerator for cement; Proceedings of the 10th International Congress on the Chemistry of Cement; Gothenburg, Sweden. 2–6 June 1997; p. 8.
Justnes H. Properties of gypsum-free Portland cement. J. Sustain. Cem. Based Mater. 2014;3:128–139. doi: 10.1080/21650373.2014.899935. DOI
Shaybadullina A., Ginchitskaya Y., Smirnova O. Decorative Coating Based on Composite Cement-Silicate Matrix. Solid State Phenom. 2018;276:122–127. doi: 10.4028/www.scientific.net/SSP.276.122. DOI
Yakovlev G., Pervushin G., Smirnova O., Begunova E., Saidova Z. The Electrical Conductivity of Fluoroanhydrite Compositions Modified at the Nanoscale Level with Carbon Black. Environ. Clim. Technol. 2020;24:706–717. doi: 10.2478/rtuect-2020-0044. DOI
Chippendale R.D., Golosnoy I.O. Percolation effects in electrical conductivity of carbon fibre composites; Proceedings of the IET 8th International Conference on Computation in Electromagnetics (CEM 2011); Wroclaw, Poland. 11–14 April 2011.
Taylor K.F.W. Chemistry of Cement. Per. from English. Thomas Telford Publishing; London, UK: 1996.
Cosoli G., Mobili A., Giulietti N., Chiariotti P., Pandarese G., Tittarelli F., Bellezze T., Mikanovic N., Revel G. Performance of concretes manufactured with newly developed low-clinker cements exposed to water and chlorides: Characterization by means of electrical impedance measurements. Constr. Build. Mater. 2020;10:121546. doi: 10.1016/j.conbuildmat.2020.121546. DOI
Belli A., Mobili A., Bellezze T., Tittarelli F., Cachim P. Evaluating the Self-Sensing Ability of Cement Mortars Manufactured with Graphene Nanoplatelets, Virgin or Recycled Carbon Fibers through Piezoresistivity Tests. Sustainability. 2018;10:4013. doi: 10.3390/su10114013. DOI
Dong W., Li W., Guo Y., He X., Sheng D. Effects of silica fume on physicochemical properties and piezoresistivity of intelligent carbon black-cementitious composites. Constr. Build. Mater. 2020;259:120399. doi: 10.1016/j.conbuildmat.2020.120399. DOI
Reddy V.S., Naidu K.S.S.T., Rao M.V.S., Shrihari S. Electrical Resistivity and Half-Cell Potential Studies to assess organic and inorganic corrosion inhibitors’ effectiveness in concrete. E3S Web Conf. 2020;184:01082. doi: 10.1051/e3sconf/202018401082. DOI
Special Issue on Silicate Solid Waste Recycling