Electrical and Self-Sensing Properties of Alkali-Activated Slag Composite with Graphite Filler
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-11516S
Grantová Agentura České Republiky
LO1408
Ministerstvo školství, mládeže a tělovýchovy ČR
PubMed
31100938
PubMed Central
PMC6566624
DOI
10.3390/ma12101616
PII: ma12101616
Knihovny.cz E-resources
- Keywords
- alkali-activated slag, compressive strength, electrical resistivity, graphite, microstructure, self-sensing,
- Publication type
- Journal Article MeSH
The electrical properties of concrete are gaining their importance for the application in building construction. In this study, graphite powder was added to alkali-activated slag mortar as an electrically conductive filler in order to enhance the mortar's conductive properties. The amount of graphite ranged from 1% to 30% of the slag mass. The effect of the graphite powder on the resistivity, capacitance, mechanical properties, and microstructure of the composite was investigated. Selected mixtures were then used for the testing of self-sensing properties under compressive loading. The results show that the addition of an amount of graphite equal to up to 10% of the slag mass improved the electrical properties of the alkali-activated slag. Higher amounts of filler did not provide any further improvement in electrical properties at lower AC frequencies but caused a strong deterioration in mechanical properties. The best self-sensing properties were achieved for the mixture with 10 wt% of graphite, but only at low compressive stresses of up to 6 MPa.
Faculty of Civil Engineering Brno University of Technology Veveří 95 602 00 Brno Czech Republic
Faculty of Civil Engineering Czech Technical University Thákurova 7 166 29 Prague Czech Republic
See more in PubMed
Han B., Yu X., Ou J. Self-Sensing Concrete in Smart Structures. Butterworth Heinemann; Oxford, UK: 2014.
Ding Y., Chen Z., Han Z., Zhang Y., Pacheco-Torgal F. Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam. Constr. Build. Mater. 2013;43:233–241.
He Y., Lu L., Jin S., Hu S. Conductive aggregate prepared using graphite and clay and its use in conductive mortar. Constr. Build. Mater. 2014;53:131–137. doi: 10.1016/j.conbuildmat.2013.11.085. DOI
Whittington H.W., McCarter J., Forde M.C. The conduction of electricity through concrete. Mag. Concr. Res. 1981;33:48–60. doi: 10.1680/macr.1981.33.114.48. DOI
Monfore G.E. The electrical resistivity of concrete. J. PCA Res. Dev. Lab. 1968;10:35–48.
Hou Z., Li Z., Wang J. Electrical Conductivity of the Carbon Fiber Conductive Concrete. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2007;22:346–349. doi: 10.1007/s11595-005-2346-x. DOI
Tian X., Hu H. Test and study on electrical property of conductive concrete. Proc. Earth Planet. Sci. 2012;5:83–87. doi: 10.1016/j.proeps.2012.01.014. DOI
Han B., Ding S., Yu X. Intrinsic self-sensing concrete and structures: A review. Measurement. 2015;59:110–128. doi: 10.1016/j.measurement.2014.09.048. DOI
Sun M., Mu X., Wang X., Hou Z., Li Z. Experimental studies on the indoor electrical floor heating system with carbon black mortar slabs. Energ. Build. 2008;40:1094–1100.
Tumidajski P.J., Xie P., Arnott M., Beaudoin J.J. Overlay current in a conductive concrete snow melting system. Cem. Concr. Res. 2003;33:1807–1809.
Hong L., Zhao Y. The electrical properties and snow melting of graphite slurry infiltrated steel fiber concrete. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2010;25:609–612. doi: 10.1007/s11595-010-0054-7. DOI
Won J.-P., Kim C.-K., Lee S.-J., Lee J.-H., Kim R.-W. Thermal characteristics of a conductive cement-based composite for a snow-melting heated pavement system. Compos. Struct. 2014;118:106–111. doi: 10.1016/j.compstruct.2014.07.021. DOI
Chung D.D.L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 2001;39:279–285. doi: 10.1016/S0008-6223(00)00184-6. DOI
Guan H., Liu S., Duan Y., Cheng J. Cement based electromagnetic shielding and absorbing building materials. Cem. Concr. Compos. 2006;28:468–474. doi: 10.1016/j.cemconcomp.2005.12.004. DOI
Han B., Yu X., Kwon E. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology. 2009;20:445501–445505. doi: 10.1088/0957-4484/20/44/445501. PubMed DOI
Sun S., Han B., Jiang S., Yu X., Wang Y., Li H., Ou J. Nano graphite platelets-enabled piezoresistive cementitious composites for structural health monitoring. Constr. Build. Mater. 2017;136:314–328. doi: 10.1016/j.conbuildmat.2017.01.006. DOI
Liu X., Wu S. Study on the graphite and carbon fiber modified asphalt concrete. Constr. Build. Mater. 2011;25:1807–1811. doi: 10.1016/j.conbuildmat.2010.11.082. DOI
Liu X., Liu W., Wu S., Wang C. Effect of carbon fillers on electrical and road properties of conductive asphalt materials. Constr. Build. Mater. 2014;68:301–306. doi: 10.1016/j.conbuildmat.2014.06.059. DOI
El-Dieb A.S., El-Ghareeb M.A., Abdel-Rahman M.A.H., Nasr E.A. Multifunctional electrically conductive concrete using different fillers. J. Build. Eng. 2018;15:61–69. doi: 10.1016/j.jobe.2017.10.012. DOI
Chen M., Gao P., Geng F., Zhang L., Liu H. Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure. Constr. Build. Mater. 2017;142:320–327. doi: 10.1016/j.conbuildmat.2017.03.048. DOI
Hanjitsuwan S., Chindaprasirt P., Pimraksa K. Electrical conductivity and dielectric property of fly ash geopolymer pastes. Int. J. Miner. Metal. Mater. 2011;18:94–99. doi: 10.1007/s12613-011-0406-0. DOI
Saafi M., Andrew K., Tang P.L., McGhon D., Taylor S., Rahman M., Yang S., Zhou X. Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites. Constr. Build. Mater. 2013;49:46–55. doi: 10.1016/j.conbuildmat.2013.08.007. DOI
Vilaplana J.L., Baeza F.J., Galao O., Zornoza E., Garcés P. Self-Sensing Properties of Alkali Activated Blast Furnace Slag (BFS) Composites Reinforced with Carbon Fibers. Materials. 2013;6:4776–4786. doi: 10.3390/ma6104776. PubMed DOI PMC
MacKenzie K.J.D., Bolton M.J. Electrical and mechanical properties of aluminosilicate inorganic polymer composites with carbon nanotubes. J. Mater. Sci. 2009;44:2851–2857. doi: 10.1007/s10853-009-3377-z. DOI
Saafi M., Tang L., Fung J., Rahman M., Sillars F., Liggat J., Zhou X. Graphene/fly ash geopolymeric composites as self-sensing structural materials. Smart Mater. Struct. 2014;23:065006. doi: 10.1088/0964-1726/23/6/065006. DOI
McLellan B.C., Williams R.P., Lay J., van Riessen A., Corder G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J. Clean. Prod. 2011;19:1080–1090. doi: 10.1016/j.jclepro.2011.02.010. DOI
Keun-Hyeok Y., Jin-Kyu S., Keum-Il S. Assessment of CO2 reduction of alkali-activated concrete. J. Clean. Prod. 2013;39:265–272.
Rovnaníková P., Bayer P., Rovnaník P., Novák J. Properties of alkali-activated aluminosilicate materials with fire-resistant aggregate after high temperature loading. In: Dhir R.K., Harrison T.A., Newlands M.D., editors. Proceedings of the International Conference on Cement Combinations for Durable Concrete; Dundee, UK. 5–7 July 2005; London, UK: Thomas Telford; 2005. pp. 277–286.
Bakharev T., Sanjayan J.G., Cheng Y.B. Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 2002;32:211–216. doi: 10.1016/S0008-8846(01)00659-7. DOI
Bakharev T., Sanjayan J.G., Cheng Y.B. Resistance of alkali-activatedslag concrete to acid attack. Cem. Concr. Res. 2003;33:1607–1611. doi: 10.1016/S0008-8846(03)00125-X. DOI
El-Didamony H., Amer A.A., Ela-ziz H.A. Properties and durability of alkali-activated slag pastes immersed in sea water. Ceram. Int. 2012;38:3773–3780. doi: 10.1016/j.ceramint.2012.01.024. DOI
Li Z.H., Peethamparan S. Leaching resistance of alkali-activated slag and fly ash mortars exposed to organic acid. Green Mater. 2018;6:117–130. doi: 10.1680/jgrma.18.00021. DOI
Rovnanik P., Bayer P., Rovnaníková P. Characterization of alkali activated slag paste after exposure to high temperatures. Constr. Build. Mat. 2013;47:1479–1487. doi: 10.1016/j.conbuildmat.2013.06.070. DOI
Zuda L., Bayer P., Rovnaník P., Černý R. Effect of high temperatures on the properties of alkali activated aluminosilicate with electrical porcelain filler. Int. J. Thermophys. 2008;29:693–705. doi: 10.1007/s10765-007-0311-y. DOI
Zuda L., Rovnaník P., Bayer P., Černý R. Thermal properties of alkali-activated aluminosilicate composite with lightweight aggregates at elevated temperatures. Fire Mater. 2011;35:231–244. doi: 10.1002/fam.1049. DOI
Guerrieri M., Sanjayan J., Collins F. Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater. Struct. 2010;43:765–773. doi: 10.1617/s11527-009-9546-3. DOI
Rashad A.M., Bai Y., Basheer P.A.M., Collier N.C., Milestone N.B. Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem. Concr. Res. 2012;42:333–343. doi: 10.1016/j.cemconres.2011.10.007. DOI
Wang S., Wen S., Chung D.D.L. Resistance heating using electrically conductive cements. Adv. Cem. Res. 2004;16:161–166. doi: 10.1680/adcr.2004.16.4.161. DOI
Saleem M., Shameem M., Hussain S.E., Maslehuddin M. Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete. Constr. Build. Mater. 1996;10:209–214. doi: 10.1016/0950-0618(95)00078-X. DOI
Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI
EN 196-1:2005—Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization; Brussel, Belgium: 2005.
Demirezen S., Kaya A., Yeriskin S.A., Balbasi M., Uslu I. Frequency and voltage dependent profile of dielectric properties, electric modulus and AC electrical conductivity in the PrBaCoO nanofiber capacitors. Res. Phys. 2016;6:180–185. doi: 10.1016/j.rinp.2016.03.003. DOI
Afandiyeva I.M., Bülbül M.M., Altindal S., Bengi S. Frequency dependent dielectric properties and electrical conductivity of platinum silicide/Si contact structures with diffusion barrier. Microelectron. Eng. 2012;93:50–55. doi: 10.1016/j.mee.2011.05.041. DOI
Wen S., Chung D.D.L. Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars. Carbon. 2006;44:1496–1502. doi: 10.1016/j.carbon.2005.12.009. DOI
Cao J., Wen S., Chung D.D.L. Defect dynamics and damage of cement-based materials, studied by electrical resistance measurement. J. Mater. Sci. 2001;36:4351–4360. doi: 10.1023/A:1017901929264. DOI
Li G.Y., Wang P.M., Zhao X.H. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Compos. 2007;29:377–382. doi: 10.1016/j.cemconcomp.2006.12.011. DOI
Wen S., Chung D.D.L. Electric polarization in carbon fibre-reinforced cement. Cem. Concr. Res. 2001;31:141–147. doi: 10.1016/S0008-8846(00)00382-3. DOI
Rovnaník P., Kusák I., Bayer P., Schmid P., Fiala L. Comparison of Electrical and Self-Sensing Properties of Portland Cement and Alkali-Activated Slag Mortars. Cem. Concr. Res. 2019;118:84–91. doi: 10.1016/j.cemconres.2019.02.009. DOI
Reza F., Batson G.B., Yamamuro J.A., Lee J.S. Resistance changes during compression of carbon fiber cement composites. J. Mater. Civ. Eng. 2003;15:476–483. doi: 10.1061/(ASCE)0899-1561(2003)15:5(476). DOI
Han B., Zhang K., Yu X., Kwon E., Ou J. Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites. Cem. Concr. Compos. 2012;34:794–800. doi: 10.1016/j.cemconcomp.2012.02.012. DOI
Han B.G., Han B.Z., Ou J.P. Novel piezoresistive composite with high sensitivity to stress/strain. Mater. Sci. Technol. 2010;26:865–870. doi: 10.1179/026708309X12454008169546. DOI
The Effect of Complex Modification on the Impedance of Cement Matrices