• This record comes from PubMed

Electrical and Self-Sensing Properties of Alkali-Activated Slag Composite with Graphite Filler

. 2019 May 16 ; 12 (10) : . [epub] 20190516

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
19-11516S Grantová Agentura České Republiky
LO1408 Ministerstvo školství, mládeže a tělovýchovy ČR

The electrical properties of concrete are gaining their importance for the application in building construction. In this study, graphite powder was added to alkali-activated slag mortar as an electrically conductive filler in order to enhance the mortar's conductive properties. The amount of graphite ranged from 1% to 30% of the slag mass. The effect of the graphite powder on the resistivity, capacitance, mechanical properties, and microstructure of the composite was investigated. Selected mixtures were then used for the testing of self-sensing properties under compressive loading. The results show that the addition of an amount of graphite equal to up to 10% of the slag mass improved the electrical properties of the alkali-activated slag. Higher amounts of filler did not provide any further improvement in electrical properties at lower AC frequencies but caused a strong deterioration in mechanical properties. The best self-sensing properties were achieved for the mixture with 10 wt% of graphite, but only at low compressive stresses of up to 6 MPa.

See more in PubMed

Han B., Yu X., Ou J. Self-Sensing Concrete in Smart Structures. Butterworth Heinemann; Oxford, UK: 2014.

Ding Y., Chen Z., Han Z., Zhang Y., Pacheco-Torgal F. Nano-carbon black and carbon fiber as conductive materials for the diagnosing of the damage of concrete beam. Constr. Build. Mater. 2013;43:233–241.

He Y., Lu L., Jin S., Hu S. Conductive aggregate prepared using graphite and clay and its use in conductive mortar. Constr. Build. Mater. 2014;53:131–137. doi: 10.1016/j.conbuildmat.2013.11.085. DOI

Whittington H.W., McCarter J., Forde M.C. The conduction of electricity through concrete. Mag. Concr. Res. 1981;33:48–60. doi: 10.1680/macr.1981.33.114.48. DOI

Monfore G.E. The electrical resistivity of concrete. J. PCA Res. Dev. Lab. 1968;10:35–48.

Hou Z., Li Z., Wang J. Electrical Conductivity of the Carbon Fiber Conductive Concrete. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2007;22:346–349. doi: 10.1007/s11595-005-2346-x. DOI

Tian X., Hu H. Test and study on electrical property of conductive concrete. Proc. Earth Planet. Sci. 2012;5:83–87. doi: 10.1016/j.proeps.2012.01.014. DOI

Han B., Ding S., Yu X. Intrinsic self-sensing concrete and structures: A review. Measurement. 2015;59:110–128. doi: 10.1016/j.measurement.2014.09.048. DOI

Sun M., Mu X., Wang X., Hou Z., Li Z. Experimental studies on the indoor electrical floor heating system with carbon black mortar slabs. Energ. Build. 2008;40:1094–1100.

Tumidajski P.J., Xie P., Arnott M., Beaudoin J.J. Overlay current in a conductive concrete snow melting system. Cem. Concr. Res. 2003;33:1807–1809.

Hong L., Zhao Y. The electrical properties and snow melting of graphite slurry infiltrated steel fiber concrete. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2010;25:609–612. doi: 10.1007/s11595-010-0054-7. DOI

Won J.-P., Kim C.-K., Lee S.-J., Lee J.-H., Kim R.-W. Thermal characteristics of a conductive cement-based composite for a snow-melting heated pavement system. Compos. Struct. 2014;118:106–111. doi: 10.1016/j.compstruct.2014.07.021. DOI

Chung D.D.L. Electromagnetic interference shielding effectiveness of carbon materials. Carbon. 2001;39:279–285. doi: 10.1016/S0008-6223(00)00184-6. DOI

Guan H., Liu S., Duan Y., Cheng J. Cement based electromagnetic shielding and absorbing building materials. Cem. Concr. Compos. 2006;28:468–474. doi: 10.1016/j.cemconcomp.2005.12.004. DOI

Han B., Yu X., Kwon E. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology. 2009;20:445501–445505. doi: 10.1088/0957-4484/20/44/445501. PubMed DOI

Sun S., Han B., Jiang S., Yu X., Wang Y., Li H., Ou J. Nano graphite platelets-enabled piezoresistive cementitious composites for structural health monitoring. Constr. Build. Mater. 2017;136:314–328. doi: 10.1016/j.conbuildmat.2017.01.006. DOI

Liu X., Wu S. Study on the graphite and carbon fiber modified asphalt concrete. Constr. Build. Mater. 2011;25:1807–1811. doi: 10.1016/j.conbuildmat.2010.11.082. DOI

Liu X., Liu W., Wu S., Wang C. Effect of carbon fillers on electrical and road properties of conductive asphalt materials. Constr. Build. Mater. 2014;68:301–306. doi: 10.1016/j.conbuildmat.2014.06.059. DOI

El-Dieb A.S., El-Ghareeb M.A., Abdel-Rahman M.A.H., Nasr E.A. Multifunctional electrically conductive concrete using different fillers. J. Build. Eng. 2018;15:61–69. doi: 10.1016/j.jobe.2017.10.012. DOI

Chen M., Gao P., Geng F., Zhang L., Liu H. Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure. Constr. Build. Mater. 2017;142:320–327. doi: 10.1016/j.conbuildmat.2017.03.048. DOI

Hanjitsuwan S., Chindaprasirt P., Pimraksa K. Electrical conductivity and dielectric property of fly ash geopolymer pastes. Int. J. Miner. Metal. Mater. 2011;18:94–99. doi: 10.1007/s12613-011-0406-0. DOI

Saafi M., Andrew K., Tang P.L., McGhon D., Taylor S., Rahman M., Yang S., Zhou X. Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites. Constr. Build. Mater. 2013;49:46–55. doi: 10.1016/j.conbuildmat.2013.08.007. DOI

Vilaplana J.L., Baeza F.J., Galao O., Zornoza E., Garcés P. Self-Sensing Properties of Alkali Activated Blast Furnace Slag (BFS) Composites Reinforced with Carbon Fibers. Materials. 2013;6:4776–4786. doi: 10.3390/ma6104776. PubMed DOI PMC

MacKenzie K.J.D., Bolton M.J. Electrical and mechanical properties of aluminosilicate inorganic polymer composites with carbon nanotubes. J. Mater. Sci. 2009;44:2851–2857. doi: 10.1007/s10853-009-3377-z. DOI

Saafi M., Tang L., Fung J., Rahman M., Sillars F., Liggat J., Zhou X. Graphene/fly ash geopolymeric composites as self-sensing structural materials. Smart Mater. Struct. 2014;23:065006. doi: 10.1088/0964-1726/23/6/065006. DOI

McLellan B.C., Williams R.P., Lay J., van Riessen A., Corder G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J. Clean. Prod. 2011;19:1080–1090. doi: 10.1016/j.jclepro.2011.02.010. DOI

Keun-Hyeok Y., Jin-Kyu S., Keum-Il S. Assessment of CO2 reduction of alkali-activated concrete. J. Clean. Prod. 2013;39:265–272.

Rovnaníková P., Bayer P., Rovnaník P., Novák J. Properties of alkali-activated aluminosilicate materials with fire-resistant aggregate after high temperature loading. In: Dhir R.K., Harrison T.A., Newlands M.D., editors. Proceedings of the International Conference on Cement Combinations for Durable Concrete; Dundee, UK. 5–7 July 2005; London, UK: Thomas Telford; 2005. pp. 277–286.

Bakharev T., Sanjayan J.G., Cheng Y.B. Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 2002;32:211–216. doi: 10.1016/S0008-8846(01)00659-7. DOI

Bakharev T., Sanjayan J.G., Cheng Y.B. Resistance of alkali-activatedslag concrete to acid attack. Cem. Concr. Res. 2003;33:1607–1611. doi: 10.1016/S0008-8846(03)00125-X. DOI

El-Didamony H., Amer A.A., Ela-ziz H.A. Properties and durability of alkali-activated slag pastes immersed in sea water. Ceram. Int. 2012;38:3773–3780. doi: 10.1016/j.ceramint.2012.01.024. DOI

Li Z.H., Peethamparan S. Leaching resistance of alkali-activated slag and fly ash mortars exposed to organic acid. Green Mater. 2018;6:117–130. doi: 10.1680/jgrma.18.00021. DOI

Rovnanik P., Bayer P., Rovnaníková P. Characterization of alkali activated slag paste after exposure to high temperatures. Constr. Build. Mat. 2013;47:1479–1487. doi: 10.1016/j.conbuildmat.2013.06.070. DOI

Zuda L., Bayer P., Rovnaník P., Černý R. Effect of high temperatures on the properties of alkali activated aluminosilicate with electrical porcelain filler. Int. J. Thermophys. 2008;29:693–705. doi: 10.1007/s10765-007-0311-y. DOI

Zuda L., Rovnaník P., Bayer P., Černý R. Thermal properties of alkali-activated aluminosilicate composite with lightweight aggregates at elevated temperatures. Fire Mater. 2011;35:231–244. doi: 10.1002/fam.1049. DOI

Guerrieri M., Sanjayan J., Collins F. Residual strength properties of sodium silicate alkali activated slag paste exposed to elevated temperatures. Mater. Struct. 2010;43:765–773. doi: 10.1617/s11527-009-9546-3. DOI

Rashad A.M., Bai Y., Basheer P.A.M., Collier N.C., Milestone N.B. Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem. Concr. Res. 2012;42:333–343. doi: 10.1016/j.cemconres.2011.10.007. DOI

Wang S., Wen S., Chung D.D.L. Resistance heating using electrically conductive cements. Adv. Cem. Res. 2004;16:161–166. doi: 10.1680/adcr.2004.16.4.161. DOI

Saleem M., Shameem M., Hussain S.E., Maslehuddin M. Effect of moisture, chloride and sulphate contamination on the electrical resistivity of Portland cement concrete. Constr. Build. Mater. 1996;10:209–214. doi: 10.1016/0950-0618(95)00078-X. DOI

Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI

EN 196-1:2005—Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization; Brussel, Belgium: 2005.

Demirezen S., Kaya A., Yeriskin S.A., Balbasi M., Uslu I. Frequency and voltage dependent profile of dielectric properties, electric modulus and AC electrical conductivity in the PrBaCoO nanofiber capacitors. Res. Phys. 2016;6:180–185. doi: 10.1016/j.rinp.2016.03.003. DOI

Afandiyeva I.M., Bülbül M.M., Altindal S., Bengi S. Frequency dependent dielectric properties and electrical conductivity of platinum silicide/Si contact structures with diffusion barrier. Microelectron. Eng. 2012;93:50–55. doi: 10.1016/j.mee.2011.05.041. DOI

Wen S., Chung D.D.L. Self-sensing of flexural damage and strain in carbon fiber reinforced cement and effect of embedded steel reinforcing bars. Carbon. 2006;44:1496–1502. doi: 10.1016/j.carbon.2005.12.009. DOI

Cao J., Wen S., Chung D.D.L. Defect dynamics and damage of cement-based materials, studied by electrical resistance measurement. J. Mater. Sci. 2001;36:4351–4360. doi: 10.1023/A:1017901929264. DOI

Li G.Y., Wang P.M., Zhao X.H. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem. Concr. Compos. 2007;29:377–382. doi: 10.1016/j.cemconcomp.2006.12.011. DOI

Wen S., Chung D.D.L. Electric polarization in carbon fibre-reinforced cement. Cem. Concr. Res. 2001;31:141–147. doi: 10.1016/S0008-8846(00)00382-3. DOI

Rovnaník P., Kusák I., Bayer P., Schmid P., Fiala L. Comparison of Electrical and Self-Sensing Properties of Portland Cement and Alkali-Activated Slag Mortars. Cem. Concr. Res. 2019;118:84–91. doi: 10.1016/j.cemconres.2019.02.009. DOI

Reza F., Batson G.B., Yamamuro J.A., Lee J.S. Resistance changes during compression of carbon fiber cement composites. J. Mater. Civ. Eng. 2003;15:476–483. doi: 10.1061/(ASCE)0899-1561(2003)15:5(476). DOI

Han B., Zhang K., Yu X., Kwon E., Ou J. Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites. Cem. Concr. Compos. 2012;34:794–800. doi: 10.1016/j.cemconcomp.2012.02.012. DOI

Han B.G., Han B.Z., Ou J.P. Novel piezoresistive composite with high sensitivity to stress/strain. Mater. Sci. Technol. 2010;26:865–870. doi: 10.1179/026708309X12454008169546. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...