A Comparison of the Resistance- and Capacitance-Based Sensing of Geopolymer and Cement Composites with Graphite Filler Under Compression
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-00960S
Czech Science Foundation
PubMed
40004275
PubMed Central
PMC11857450
DOI
10.3390/ma18040750
PII: ma18040750
Knihovny.cz E-zdroje
- Klíčová slova
- Portland cement, capacitance, fly ash, graphite, mechanical properties, microstructure, resistance, self sensing, slag,
- Publikační typ
- časopisecké články MeSH
Aluminosilicate binders, such as Portland cement or geopolymers, are generally considered electrical insulators. In order to decrease their electrical resistance, electrically conductive fillers are added. This brings new application possibilities, such as the self-sensing and self-monitoring of smart structures. In this study, three different aluminosilicate composites with the same amount of fine graphite filler (6% with respect to the basic aluminosilicate raw material) were tested for resistance- and capacitance-based self-sensing properties. Portland cement and two geopolymer binders were used as the basic matrices for the conductive composites. The composites were tested for self-sensing properties in repeated compression in the elastic area, static mechanical properties, and microstructure using scanning electron microscopy and mercury intrusion porosimetry. The results showed that alkali-activated materials are less stiff than Portland cement composite; however, they provide better self-sensing properties, regardless of the measured electrical parameters. The highest capacitance-based gauge factor 74.5 was achieved with the blended slag/fly ash geopolymer composite, whereas the cement composite showed very poor sensitivity, with a gauge factor of 10.2. The study showed a new possibility of self-sensing based on the measurement of capacitance, which is suitable for geopolymers and alkali-activated composites; however, in the case of cement composites, it is very limited.
Zobrazit více v PubMed
Han B., Yu X., Ou J. Self-Sensing Concrete in Smart Structures. Butterworth-Heinemann; Oxford, UK: 2014.
Bontea D.-M., Chung D.D.L., Lee G.C. Damage in carbon fiber-reinforced concrete, monitored by electrical resistance measurement. Cem. Concr. Res. 2000;30:651–659. doi: 10.1016/S0008-8846(00)00204-0. DOI
Chen B., Liu J. Damage in carbon fiber-reinforced concrete, monitored by both electrical resistance measurement and acoustic emission analysis. Constr. Build. Mater. 2008;22:2196–2201. doi: 10.1016/j.conbuildmat.2007.08.004. DOI
Song F., Chen Q., Zheng Q. Multifunctional ultra-high performance fibre-reinforced concrete with integrated self-sensing and repair capabilities towards in-situ structure monitoring. Compos. Struct. 2023;321:117240. doi: 10.1016/j.compstruct.2023.117240. DOI
Wang X., Ding S., Ni Y.-Q., Zhang L., Dong S., Han B. Intrinsic self-sensing concrete to energize infrastructure intelligence and resilience: A review. J. Infrastruct. Intell. Resil. 2024;3:100094. doi: 10.1016/j.iintel.2024.100094. DOI
Alsalman A., Assi L.N., Kareem R.S., Carter K., Ziehl P. Energy and CO2 emission assessments of alkali-activated concrete and Ordinary Portland Cement concrete: A comparative analysis of different grades of concrete. Clean. Environ. Syst. 2021;3:100047. doi: 10.1016/j.cesys.2021.100047. DOI
McLellan B.C., Williams R.P., Lay J., van Riessen A., Corder G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011;19:1080–1090. doi: 10.1016/j.jclepro.2011.02.010. DOI
Zhang Y., Chen J., Xia J. Compressive Strength and Chloride Resistance of Slag/Metakaolin-Based Ultra-High-Performance Geopolymer Concrete. Materials. 2023;16:181. doi: 10.3390/ma16010181. PubMed DOI PMC
Tennakoon C., Shayan A., Sanjayan J.G., Xu A. Chloride ingress and steel corrosion in geopolymer concrete based on long term tests. Mater. Des. 2017;116:287–299. doi: 10.1016/j.matdes.2016.12.030. DOI
Amorim Júnior N.S., Andrade Neto J.S., Santana H.A., Cilla M.S., Ribeiro D.V. Durability and service life analysis of metakaolin-based geopolymer concretes with respect to chloride penetration using chloride migration test and corrosion potential. Constr. Build. Mater. 2021;287:122970. doi: 10.1016/j.conbuildmat.2021.122970. DOI
Khan H.A., Castel A., Khan M.S.H. Corrosion investigation of fly ash based geopolymer mortar in natural sewer environment and sulphuric acid solution. Corros. Sci. 2020;168:108586. doi: 10.1016/j.corsci.2020.108586. DOI
Sata V., Sathonsaowaphak A., Chindaprasirt P. Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack. Cem. Concr. Compos. 2012;34:700–708. doi: 10.1016/j.cemconcomp.2012.01.010. DOI
Bakharev T. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cem. Concr. Res. 2005;35:1233–1246. doi: 10.1016/j.cemconres.2004.09.002. DOI
Bakharev T., Sanjayan J.G., Cheng Y.B. Sulfate attack on alkali-activated slag concrete. Cem. Concr. Res. 2002;32:211–216. doi: 10.1016/S0008-8846(01)00659-7. DOI
Bakharev T. Resistance of geopolymer materials to acid attack. Cem. Concr. Res. 2005;35:658–670. doi: 10.1016/j.cemconres.2004.06.005. DOI
Fu Y., Cai L., Yonggen W. Freeze–thaw cycle test and damage mechanics models of alkali-activated slag concrete. Constr. Build. Mater. 2011;25:3144–3148. doi: 10.1016/j.conbuildmat.2010.12.006. DOI
Özdal M., Karakoç M.B., Özcan A. Investigation of the properties of two different slag-based geopolymer concretes exposed to freeze–thaw cycles. Struct. Concr. 2021;22:E332–E340. doi: 10.1002/suco.201900441. DOI
Zhao R., Yuan Y., Cheng Z., Wen T., Li J., Li F., Ma Z.J. Freeze-thaw resistance of Class F fly ash-based geopolymer concrete. Constr. Build. Mater. 2019;222:474–483. doi: 10.1016/j.conbuildmat.2019.06.166. DOI
Amran M., Huang S.-S., Debbarma S., Rashid R.S.M. Fire resistance of geopolymer concrete: A critical review. Constr. Build. Mater. 2022;324:126722. doi: 10.1016/j.conbuildmat.2022.126722. DOI
Shen Y., Wang Q., Zhou Q., Li X., Xiang Z. Experimental Study on Fire Resistance of Geopolymer High-Performance Concrete Prefabricated Stairs. Buildings. 2024;14:3783. doi: 10.3390/buildings14123783. DOI
Duan P., Yan C., Zhou W., Luo W. Thermal Behavior of Portland Cement and Fly Ash–Metakaolin-Based Geopolymer Cement Pastes. Arab. J. Sci. Eng. 2015;40:2261–2269. doi: 10.1007/s13369-015-1748-0. DOI
Gökçe H.S. Durability of slag-based alkali-activated materials: A critical review. J. Aust. Ceram. Soc. 2024;60:885–903. doi: 10.1007/s41779-024-01011-z. DOI
Zhang Y., Chen S., Liang T., Ruan S., Wang W., Lin J., Liu Y., Yan D. EIS investigation on electrical properties of metakaolin-based geopolymer. Constr. Build. Mater. 2024;437:136851. doi: 10.1016/j.conbuildmat.2024.136851. DOI
Rovnaník P., Kusák I., Bayer P., Schmid P., Fiala L. Comparison of electrical and self-sensing properties of Portland cement and alkali-activated slag mortars. Cem. Concr. Res. 2019;118:84–91. doi: 10.1016/j.cemconres.2019.02.009. DOI
Han B., Ding S., Yu X. Intrinsic self-sensing concrete and structures: A review. Measurement. 2015;59:110–128. doi: 10.1016/j.measurement.2014.09.048. DOI
Tian Z., Li Y., Zheng J., Wang S. A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Compos. Part B Eng. 2019;177:107437. doi: 10.1016/j.compositesb.2019.107437. DOI
Konsta-Gdoutos M.S., Aza C.A. Self sensing carbon nanotube (CNT) and nanofiber (CNF) cementitious composites for real time damage assessment in smart structures. Cem. Concr. Comp. 2014;53:162–169. doi: 10.1016/j.cemconcomp.2014.07.003. DOI
Al-Dahawi A., Sarwary M.H., Öztürk O., Yıldırım G., Akın A., Şahmaran M., Lachemi M. Electrical percolation threshold of cementitious composites possessing self-sensing functionality incorporating different carbon-based materials. Smart Mater. Struct. 2016;25:105005. doi: 10.1088/0964-1726/25/10/105005. DOI
Yoo D.-Y., You I., Zi G., Lee S.-J. Effects of carbon nanomaterial type and amount on self-sensing capacity of cement paste. Measurement. 2019;134:750–761. doi: 10.1016/j.measurement.2018.11.024. DOI
Thomoglou A.K., Falara M.G., Voutetaki M.E., Fantidis J.G., Tayeh B.A., Chalioris C.E. Electromechanical properties of multi-reinforced self-sensing cement-based mortar with MWCNTs, CFs, and PPs. Constr. Build. Mater. 2023;400:132566. doi: 10.1016/j.conbuildmat.2023.132566. DOI
Zhao Y., Zhang J., Qiang S., Lu H., Li J. Effect of carbon fibers and graphite particles on mechanical properties and electrical conductivity of cement composite. J. Build. Eng. 2024;94:110036. doi: 10.1016/j.jobe.2024.110036. DOI
Chen P.-W., Chung D.D.L. Concrete as a new strain/stress sensor. Compos. Part B Eng. 1996;27:11–23. doi: 10.1016/1359-8368(95)00002-X. DOI
Wen S., Chung D.D.L. Carbon fiber-reinforced cement as a thermistor. Cem. Concr. Res. 1999;29:961–965. doi: 10.1016/S0008-8846(99)00075-7. DOI
McAlorum J., Perry M., Vlachakis C., Biondi L., Lavoie B. Robotic spray coating of self-sensing metakaolin geopolymer for concrete monitoring. Autom. Constr. 2021;121:103415. doi: 10.1016/j.autcon.2020.103415. DOI
Rovnaník P., Kusák I., Bayer P. Effect of water saturation on the electrical properties of cement and alkali-activated slag composites with graphite conductive admixture. Constr. Build. Mater. 2022;361:11. doi: 10.1016/j.conbuildmat.2022.129699. DOI
Biondi L., Perry M., McAlorum J., Vlachakis C., Hamilton A. Geopolymer-based moisture sensors for reinforced concrete health monitoring. Sens. Actuators B Chem. 2020;309:127775. doi: 10.1016/j.snb.2020.127775. DOI
Chung D.D.L. Damage detection using self-sensing concepts. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2007;221:509–520. doi: 10.1243/09544100JAERO203. DOI
Mizerova C., Kusák I., Topolár L., Schmid P., Rovnaník P. Self-Sensing Properties of Fly Ash Geopolymer Doped with Carbon Black under Compression. Materials. 2021;14:4350. doi: 10.3390/ma14164350. PubMed DOI PMC
Fu X., Ma E., Chung D.D.L., Anderson W.A. Self-monitoring in carbon fiber reinforced mortar by reactance measurement. Cem. Concr. Res. 1997;27:845–852. doi: 10.1016/S0008-8846(97)83277-2. DOI
Ozturk M. Capacitance-based compression self-sensing effectiveness of cement paste with curing time. Mag. Concr. Res. 2023;75:965–972. doi: 10.1680/jmacr.22.00114. DOI
Mwelango M., Zhu T., Wen K., Zhang Z., Yuan X., Li W., Yin X. Coplanar capacitive sensors and their applications in non-destructive evaluation: A review. Nondestruct. Test. Eval. 2023;38:861–905. doi: 10.1080/10589759.2023.2198233. DOI
Ozturk M., Chung D.D.L. Piezopermittivity of cement mortar with various water contents and its application to capacitance-based structural self-sensing of stress. Sens. Actuators A Phys. 2024;369:115206. doi: 10.1016/j.sna.2024.115206. DOI
Ozturk M., Xi X. Enhancing Capacitive Self-sensing Ability of Cement Mortar by Designing Electrode Configuration. J. Electron. Mater. 2025;54:1731–1738. doi: 10.1007/s11664-024-11722-5. DOI
Chung D.D.L., Wang Y. Capacitance-based stress self-sensing in cement paste without requiring any admixture. Cem. Concr. Comp. 2018;94:255–263. doi: 10.1016/j.cemconcomp.2018.09.017. DOI
Xi X., Ozturk M., Chung D.D.L. DC electric polarization of cured cement paste being unexpectedly hindered by free water. J. Am. Ceram. Soc. 2022;105:1074–1082. doi: 10.1111/jace.18121. DOI
Hou Y.-Y., Sun M.-Q., Chen J.-Z. Electrical resistance and capacitance responses of smart ultra-high performance concrete with compressive strain by DC and AC measurements. Constr. Build. Mater. 2022;327:127007. doi: 10.1016/j.conbuildmat.2022.127007. DOI
Roshan M.J., Correia A.G., Fangueiro R., Mendes P.M. Self-sensing cementitious composites for structural health monitoring: Recent advances and challenges and future prospects. Meas. Sci. Technol. 2024;36:012006. doi: 10.1088/1361-6501/ad929a. DOI
Di Mare M., Ouellet-Plamondon C.M. Greener, smarter, stronger: Self-sensing construction materials from one-part alkali-activated materials. Mater. Lett. 2023;349:134830. doi: 10.1016/j.matlet.2023.134830. DOI
Bi S., Liu M., Shen J., Hu X.M., Zhang L. Ultrahigh Self-Sensing Performance of Geopolymer Nanocomposites via Unique Interface Engineering. ACS Appl. Mater. Interfaces. 2017;9:12851–12858. doi: 10.1021/acsami.7b00419. PubMed DOI
D’Alessandro A., Coffetti D., Crotti E., Coppola L., Meoni A., Ubertini F. Self-Sensing Properties of Green Alkali-Activated Binders with Carbon-Based Nanoinclusions. Sustainability. 2020;12:9916. doi: 10.3390/su12239916. DOI
Deng L., Ma Y., Hu J., Yin S., Ouyang X., Fu J., Liu A., Zhang Z. Preparation and piezoresistive properties of carbon fiber-reinforced alkali-activated fly ash/slag mortar. Constr. Build. Mater. 2019;222:738–749. doi: 10.1016/j.conbuildmat.2019.06.134. DOI
Vlachakis C., Wang X., Al-Tabbaa A. Investigation of the compressive self-sensing response of filler-free metakaolin geopolymer binders and coatings. Constr. Build. Mater. 2023;392:131682. doi: 10.1016/j.conbuildmat.2023.131682. DOI
Ma Y., Liu W., Hu J., Fu J., Zhang Z., Wang H. Optimization on the piezoresistivity of alkali-activated fly ash/slag mortar by using conductive aggregates and carbon fibers. Cem. Concr. Comp. 2020;114:103735. doi: 10.1016/j.cemconcomp.2020.103735. DOI
Rovnaník P., Kusák I., Bayer P., Schmid P., Fiala L. Electrical and Self-Sensing Properties of Alkali-Activated Slag Composite with Graphite Filler. Materials. 2019;12:1616. doi: 10.3390/ma12101616. PubMed DOI PMC
Luo T., Wang Q., Fang Z. Effect of graphite on the self-sensing properties of cement and alkali-activated fly ash/slag based composite cementitious materials. J. Build. Eng. 2023;77:107493. doi: 10.1016/j.jobe.2023.107493. DOI
Lu M., Xie H., Wang H., Ma Y. Self-sensing properties of steel fiber reinforced-alkali-activated fly ash/slag mortar. Constr. Build. Mater. 2025;458:139580. doi: 10.1016/j.conbuildmat.2024.139580. DOI
Ma Y., Li F., Xie H., Liu W., Ouyang X., Fu J., Wang H. Self-sensing properties of alkali-activated materials prepared with different precursors. Constr. Build. Mater. 2023;409:134201. doi: 10.1016/j.conbuildmat.2023.134201. DOI
European Committee for Standardization; Brussels, Belgium: 2016. Methods of Testing Cement. Determination of Strength.
Cui P., Wan Y., Shao X., Ling X., Zhao L., Gong Y., Zhu C. Study on Shrinkage in Alkali-Activated Slag–Fly Ash Cementitious Materials. Materials. 2023;16:3958. doi: 10.3390/ma16113958. PubMed DOI PMC
Puertas F., Martínez-Ramírez S., Alonso S., Vázquez T. Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cem. Concr. Res. 2000;30:1625–1632. doi: 10.1016/S0008-8846(00)00298-2. DOI
Han B., Zhang K., Yu X., Kwon E., Ou J. Electrical characteristics and pressure-sensitive response measurements of carboxyl MWNT/cement composites. Cem. Concr. Comp. 2012;34:794–800. doi: 10.1016/j.cemconcomp.2012.02.012. DOI
Wang Y., Zhao X. Positive and negative pressure sensitivities of carbon fiber-reinforcedcement-matrix composites and their mechanism. Acta Mater. Compos. Sin. 2005;22:40–46.
Chung D.D.L. Self-sensing concrete: From resistance-based sensing to capacitance-based sensing. Int. J. Smart Nano Mater. 2021;12:1–19. doi: 10.1080/19475411.2020.1843560. DOI
Han B., Yu X., Ou J. Effect of water content on the piezoresistivity of MWNT/cement composites. J. Mater. Sci. 2010;45:3714–3719. doi: 10.1007/s10853-010-4414-7. DOI
Saxena S.C., Tayal G.M. Capacitive Moisture Meter. IEEE Trans. Ind. Electron. Control. Instrum. 1981;IECI-28:37–39. doi: 10.1109/TIECI.1981.351021. DOI
Hudec P., MacInnis C., Moukwa M. The capacitance effect method of measuring moisture and salt content of concrete. Cem. Concr. Res. 1986;16:481–490. doi: 10.1016/0008-8846(86)90085-2. DOI
Kucharczyková B., Nápravník P., Kocáb D., Lisztwan D., Rovnaník P., Hajzler J., Bílek V. Comprehensive study of moist curing duration and activator type on mechanical properties, shrinkage, and cracking of alkali-activated slag. Constr. Build. Mater. 2024;416:135199. doi: 10.1016/j.conbuildmat.2024.135199. DOI
Wei Y., Dou H., He T., Song K., Zhang Q. Investigation of shrinkage mechanism of alkali-activated slag. Case Stud. Constr. Mater. 2024;21:e03493. doi: 10.1016/j.cscm.2024.e03493. DOI