Self-Sensing Properties of Fly Ash Geopolymer Doped with Carbon Black under Compression

. 2021 Aug 04 ; 14 (16) : . [epub] 20210804

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34442875

Grantová podpora
19-11516S Czech Science Foundation

The development of smart materials is a basic prerequisite for the development of new technologies enabling the continuous non-destructive diagnostic analysis of building structures. Within this framework, the piezoresistive behavior of fly ash geopolymer with added carbon black under compression was studied. Prepared cubic specimens were doped with 0.5, 1 and 2% carbon black and embedded with four copper electrodes. In order to obtain a complex characterization during compressive loading, the electrical resistivity, longitudinal strain and acoustic emission were recorded. The samples were tested in two modes: repeated loading under low compressive forces and continuous loading until failure. The results revealed piezoresistivity for all tested mixtures, but the best self-sensing properties were achieved with 0.5% of carbon black admixture. The complex analysis also showed that fly ash geopolymer undergoes permanent deformations and the addition of carbon black changes its character from quasi-brittle to rather ductile. The combination of electrical and acoustic methods enables the monitoring of materials far beyond the working range of a strain gauge.

Zobrazit více v PubMed

Miller S.A., Moore F.C. Climate and health damages from global concrete production. Nat. Clim. Chang. 2020;10:439–443. doi: 10.1038/s41558-020-0733-0. DOI

Han B., Zhang L., Ou J. Smart and Multifunctional Concrete toward Sustainable Infrastructures. Springer; Singapore: 2017. pp. 369–377.

Tang Z., Li W., Hu Y., Zhou J.L., Tam V.W. Review on designs and properties of multifunctional alkali-activated materials (AAMs) Constr. Build. Mater. 2019;200:474–489. doi: 10.1016/j.conbuildmat.2018.12.157. DOI

Han B., Yu X., Ou J. Self-Sensing Concrete in Smart Structures. Butterworth-Heinemann; Oxford, MS, USA: 2014.

Tian Z., Li Y., Zheng J., Wang S. A state-of-the-art on self-sensing concrete: Materials, fabrication and properties. Compos. Part B. 2019;177:107437. doi: 10.1016/j.compositesb.2019.107437. DOI

Bernal S.A., Provis J.L. Durability of alkali-activated materials: Progress and perspectives. J. Am. Ceram. Soc. 2014;97:997–1008. doi: 10.1111/jace.12831. DOI

Provis J.L., Van Deventer J.S.J., editors. Geopolymers: Structures, Processing, Properties and Industrial Applications. Woodhead Publishing; Sawston, UK: 2009.

Faridmehr I., Nehdi M.L., Nikoo M., Huseien G.F., Ozbakkaloglu T. Life-Cycle Assessment of Alkali-Activated Materials Incorporating Industrial Byproducts. Materials. 2021;14:2401. doi: 10.3390/ma14092401. PubMed DOI PMC

Vilaplana J.L., Baeza F.J., Galao O., Zornoza E., Garcés P. Self-sensing properties of alkali activated blast furnace slag (BFS) composites reinforced with carbon fibers. Materials. 2013;6:4776–4786. doi: 10.3390/ma6104776. PubMed DOI PMC

Lamuta C., Bruno L., Candamano S., Pagnotta L. Piezoresistive characterization of graphene/metakaolin based geopolymeric mortar composites. MRS Adv. 2017;2:3773–3779. doi: 10.1557/adv.2017.595. DOI

Rovnaník P., Kusák I., Bayer P., Schmid P., Fiala L. Comparison of electrical and self-sensing properties of Portland cement and alkali-activated slag mortars. Cem. Concr. Res. 2019;118:84–91. doi: 10.1016/j.cemconres.2019.02.009. DOI

Hanjitsuwan S., Hunpratub S., Thongbai P., Maensiri S., Sata V., Chindaprasirt P. Effects of NaOH concentrations on physical and electrical properties of high calcium fly ash geopolymer paste. Cem. Concr. Compos. 2014;45:9–14. doi: 10.1016/j.cemconcomp.2013.09.012. DOI

Vlachakis C., Perry M., Biondi L. Self-sensing alkali-activated materials: A review. Minerals. 2020;10:885. doi: 10.3390/min10100885. DOI

Saafi M., Gullane A., Huang B., Sadeghi H., Ye J., Sadeghi F. Inherently multifunctional geopolymeric cementitious composite as electrical energy storage and self-sensing structural material. Compos. Struct. 2018;201:766–778. doi: 10.1016/j.compstruct.2018.06.101. DOI

Demircilioğlu E., Teomete E., Schlangen E., Baeza F.J. Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete. Constr. Build. Mat. 2019;224:420–427. doi: 10.1016/j.conbuildmat.2019.07.091. DOI

Biondi L., Perry M., McAlorum J., Vlachakis C., Hamilton A. Geopolymer-based moisture sensors for reinforced concrete health monitoring. Sens. Actuators B Chem. 2020;309:127775. doi: 10.1016/j.snb.2020.127775. DOI

Donnet J.B., editor. Carbon Black: Science and Technology. CRC Press; Boca Raton, FL, USA: 1993.

Monteiro A.O., Cachim P.B., Costa P.M. Self-sensing piezoresistive cement composite loaded with carbon black particles. Cem. Concr. Comp. 2017;81:59–65. doi: 10.1016/j.cemconcomp.2017.04.009. DOI

Lin V.W., Li M., Lynch J.P., Li V.C. Mechanical and electrical characterization of self-sensing carbon black ECC; Proceedings of the Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2011; San Diego, CA, USA. 8 April 2011.

Wen S., Chung D.D.L. Partial replacement of carbon fiber by carbon black in multifunctional cement–matrix composites. Carbon. 2007;45:505–513. doi: 10.1016/j.carbon.2006.10.024. DOI

Chen M., Gao P., Geng F., Zhang L., Liu H. Mechanical and smart properties of carbon fiber and graphite conductive concrete for internal damage monitoring of structure. Constr. Build. Mat. 2017;142:320–327. doi: 10.1016/j.conbuildmat.2017.03.048. DOI

Grosse C.U., Ohtsu M. Acoustic Emission Testing. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2008. pp. 19–35.

El Batanouny M.K., Larosche A., Mazzoleni P., Ziehl P.H., Matta F., Zappa E. Identification of cracking mechanisms in scaled FRP reinforced concrete beams using acoustic emission. Exp. Mech. 2014;54:69–82. doi: 10.1007/s11340-012-9692-3. DOI

Baeza F.J., Galao O., Zornoza E., Garcés P. Effect of aspect ratio on strain sensing capacity of carbon fiber reinforced cement composites. Mat. Des. 2013;51:1085–1094. doi: 10.1016/j.matdes.2013.05.010. DOI

Chung D.D.L. Multifunctional Cement-Based Materials. Marcel Dekker Inc.; New York, NY, USA: 2003. p. 130.

Mizerová C., Kusák I., Rovnaník P. Application of carbon black in conductive fly ash geopolymer mortars. IOP Conf. Ser. Mater. Sci. Eng. 2019;583:012016. doi: 10.1088/1757-899X/583/1/012014. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...