CD8+ Tregs revisited: A heterogeneous population with different phenotypes and properties
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33501647
DOI
10.1002/eji.202048614
Knihovny.cz E-zdroje
- Klíčová slova
- Autoimmunity, CD8 T cells, Homeostasis, Regulatory T cells, Tolerance,
- MeSH
- antigeny CD28 imunologie MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- fenotyp MeSH
- imunologická tolerance imunologie MeSH
- lidé MeSH
- regulační T-lymfocyty imunologie MeSH
- T-lymfocyty - podskupiny imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antigeny CD28 MeSH
Regulatory T cells (Tregs) play a key role in the peripheral self-tolerance and preventing autoimmunity. While classical CD4+ Foxp3+ Tregs are well established, their CD8+ counterparts are still controversial in many aspects including their phenotypic identity and their mechanisms of suppression. Because of these controversies and because of only a limited number of studies documenting the immunoregulatory function of CD8+ Tregs in vivo, the concept of CD8+ Tregs is still not unanimously accepted. We propose that any T-cell subset considered as true regulatory must be distinguishable from other cell types and must suppress in vivo immune responses via a known mechanism. In this article, we revisit the concept of CD8+ Tregs by focusing on the characterization of individual CD8+ T-cell subsets with proposed regulatory capacity separately. Therefore, we review the phenotype and function of CD8+ FOXP3+ T cells, CD8+ CD122+ T cells, CD8+ CD28low/- T cells, CD8+ CD45RClow T cells, T cells expressing CD8αα homodimer and Qa-1-restricted CD8+ T cells to show whether there is sufficient evidence to establish these subsets as bona fide Tregs. Based on the intrinsic ability of CD8+ Treg subsets to promote immune tolerance in animal models, we elaborate on their potential use in clinics.
Faculty of Science Charles University Prague Czech Republic
Institute of Experimental Neuroimmunology Technical University of Munich Munich Germany
Zobrazit více v PubMed
Gershon, R. K. and Kondo, K., Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 1970. 18: 723-737.
Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. 155: 1151-1164.
Fontenot, J. D., Gavin, M. A. and Rudensky, A. Y., Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003. 4: 330-336.
Flippe, L., Bézie, S., Anegon, I. and Guillonneau, C., Future prospects for CD8(+) regulatory T cells in immune tolerance. Immunol. Rev. 2019. 292: 209-224.
Vieyra-Lobato, M. R., Vela-Ojeda, J., Montiel-Cervantes, L., López-Santiago, R. and Moreno-Lafont, M. C., Description of CD8(+) regulatory T lymphocytes and their specific intervention in graft-versus-host and infectious diseases, autoimmunity, and cancer. J Immunol Res 2018. 2018: 1-16.
Yu, Y. T., Yu, Y., Ma, X., Gong, R., Zhu, J., Wei, L. and Yao, J., Recent advances in CD8(+) regulatory T cell research (Review). Oncol. Lett. 2018. 15: 8187-8194.
Kedia-Mehta, N. and Finlay, D. K., Competition for nutrients and its role in controlling immune responses. Nat. Commun. 2019. 10: 1-8.
Klein, L., Khazaie, K. and Von Boehmer, H., In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc Natl Acad Sci USA 2003. 100: 8886-8891.
Chaput, N., Louafi, S., Bardier, A., Charlotte, F., Vaillant, J. -C., Menegaux, F., Rosenzwajg, M. et al., Identification of CD8(+)CD25(+)Foxp3(+) suppressive T cells in colorectal cancer tissue. Gut 2009. 58: 520-529.
Ablamunits, V., Bisikirska, B. and Herold, K. C., Acquisition of regulatory function by human CD8(+) T cells treated with anti-CD3 antibody requires TNF. Eur. J. Immunol. 2010. 40: 2891-2901.
Aoyama, A., Klarin, D., Yamada, Y., Boskovic, S., Nadazdin, O., Kawai, K., Schoenfeld, D. et al., Low-dose IL-2 for In vivo expansion of CD4+ and CD8+ regulatory T cells in nonhuman primates. Am. J. Transplant. 2012. 12: 2532-2537.
Churlaud, G., Pitoiset, F., Jebbawi, F., Lorenzon, R., Bellier, B., Rosenzwajg, M., Klatzmann, D. et al., Human and mouse CD8(+)CD25(+)FOXP3(+) regulatory T cells at steady state and during interleukin-2 therapy. Front. Immunol 2015. 6: 10.
Chen, J., Zhou, Y., Chen, S., Liu, M., Guo, W., Wang, Q., Su, X. et al., Lkb1 in dendritic cells restricts CD8(+)Foxp3(+)regulatory T cells expansion in vivo. Exp. Cell Res. 2019. 384: 111650.
Iamsawat, S., Tian, L., Daenthanasanmak, A., Wu, Y., Nguyen, H. D., Bastian, D. and Yu, X.-Z., Vitamin C stabilizes CD8(+) iTregs and enhances their therapeutic potential in controlling murine GVHD and leukemia relapse. Blood Advances 2019. 3: 4187-4201.
Sun, J., Yang, Y., Huo, X., Zhu, B., Li, Z., Jiang, X., Xie, R. et al., Efficient therapeutic function and mechanisms of human polyclonal CD8(+)CD103(+)Foxp3(+) regulatory T cells on collagen-induced arthritis in mice. J Immunol Res 2019. 2019: 8575407.
Singh, R. P., La Cava, A., Wong, M., Ebling, F. and Hahn, B. H., CD8+ T cell-mediated suppression of autoimmunity in a murine lupus model of peptide-induced immune tolerance depends on Foxp3 expression. J. Immunol. 2007. 178: 7649-7657.
Hahn, B. H., Singh, R. P., La Cava, A. and Ebling, F M., Tolerogenic treatment of lupus mice with consensus peptide induces Foxp3-expressing, apoptosis-resistant, TGF beta-secreting CD8+ T cell suppressors. J. Immunol. 2005. 175: 7728-7737.
Beres, A. J., Haribhai, D., Chadwick, A. C., Gonyo, P J., Williams, C. B., and Drobyski, W. R., CD8(+) Foxp3(+) Regulatory T cells are induced during graft-versus-host disease and mitigate disease severity. J. Immunol. 2012. 189: 464-474.
Agle, K., Vincent, B. G., Piper, C., Belle, L., Zhou, V., Shlomchik, W., Serody, J. S. et al., Bim regulates the survival and suppressive capability of CD8(+) FOXP3(+) regulatory T cells during murine GVHD. Blood 2018. 132: 435-447.
Mayer, C. T., Floess, S., Baru, A. M., Lahl, K., Huehn, J. and Sparwasser, T., CD8(+)Foxp3(+) T cells share developmental and phenotypic features with classical CD4(+)Foxp3(+) regulatory T cells but lack potent suppressive activity. Eur. J. Immunol. 2011. 41: 716-725.
Fontenot, J. D., Rasmussen, J. P., Williams, L. M., Dooley, J. L., Farr, A. G. and Rudensky, A. Y., Regulatory T cell lineage specification by the forkhead transcription factor FoxP3. Immunity 2005. 22: 329-341.
Peng, L. -S., Zhuang, Y., Shi, Y., Zhao, Y.-L., Wang, T.-T., Chen, Na, Cheng, P. et al., Increased tumor-infiltrating CD8(+)Foxp3(+) T lymphocytes are associated with tumor progression in human gastric cancer. Cancer Immunol Immunotherap 2012. 61: 2183-2192.
Lerret, N. M, Houlihan, J. L, Kheradmand, T., Pothoven, K. L, Zhang, Z. J and Luo, X., Donor-specific CD8(+)Foxp3(+) T cells protect skin allografts and facilitate induction of conventional CD4(+)Foxp3(+) regulatory T cells. Am J Transplantat 2012. 12: 2335-2347.
Eusebio, M., Kraszula, L., Kupczyk, M., Kuna, P. and Pietruczuk, M., Low frequency of CD8+CD25+FOXP3(BRIGHT) T cells and FOXP3 mRNA expression in the peripheral blood of allergic asthma patients. J. Biol. Regul. Homeost. Agents 2012. 26: 211-220.
Frisullo, G., Nociti, V., Iorio, R., Plantone, D., Patanella, A. K, Tonali, P A. and Batocchi, A. P., CD8(+)Foxp3(+) T cells in peripheral blood of relapsing-remitting multiple sclerosis patients. Hum. Immunol. 2010. 71: 437-441.
Kiniwa, Y., Miyahara, Y., Wang, H. Y., Peng, W., Peng, G., Wheeler, T. M., Thompson, T. C. et al., CD8(+) Foxp3(+) regulatory T cells mediate immunosuppression in prostate cancer. Clin. Cancer Res. 2007. 13: 6947-6958.
Karlsson, I., Malleret, B., Brochard, P., Delache, Benoît, Calvo, J., Le Grand, R. and Vaslin, B., FoxP3+ CD25+ CD8+ T-cell induction during primary simian immunodeficiency virus infection in cynomolgus macaques correlates with low CD4+ T-cell activation and high viral load. J. Virol. 2007. 81: 13444-13455.
Iamsawat, S., Daenthanasanmak, A., Voss, J. H., Nguyen, H., Bastian, D., Liu, C. and Yu, X.-Z., Stabilization of Foxp3 by targeting JAK2 enhances efficacy of cd8 induced regulatory T cells in the prevention of graft-versus-host disease. J. Immunol. 2018. 201: 2812-2823.
Correale, J. and Villa, A., Role of CD8+CD25+Foxp3+Regulatory T cells in multiple sclerosis. Annal Neurol 2010. 67: 625-638.
Mahic, M., Henjum, K., Yaqub, S., Bjørnbeth, B. A., Torgersen, K. M., Taskén, K. and Aandahl, E. M., Generation of highly suppressive adaptive CD8(+)CD25(+)FOXP3(+) regulatory T cells by continuous antigen stimulation. Eur. J. Immunol. 2008. 38: 640-646.
Wen, Z., Shimojima, Y., Shirai, T., Li, Y., Ju, J., Yang, Z., Tian, Lu et al., NADPH oxidase deficiency underlies dysfunction of aged CD8(+) Tregs. J Clin Investigat 2016. 126: 1953-1967.
Pillai, V., Ortega, S. B., Wang, C. K. and Karandikar, N. J., Transient regulatory T-cells: a state attained by all activated human T-cells. Clin. Immunol. 2007. 123: 18-29.
Heeren, A. M., Rotman, J., Stam, A. G. M., Pocorni, N., Gassama, A. A., Samuels, S., Bleeker, M. C. G. et al., Efficacy of PD-1 blockade in cervical cancer is related to a CD8(+)FoxP3(+)CD25(+) T-cell subset with operational effector functions despite high immune checkpoint levels. J Immunotherap Cancer 2019. 7: 43.
Anichini, A., Molla, A., Vegetti, C., Bersani, I., Zappasodi, R., Arienti, F., Ravagnani, F. et al., Tumor-reactive CD8(+) early effector T cells identified at tumor site in primary and metastatic melanoma. Cancer Res. 2010. 70: 8378-8387.
Zhang, S. P., Ke, X., Zeng, S., Wu, M., Lou, J., Wu, L., Huang, P. et al., Analysis of CD8(+) Treg cells in patients with ovarian cancer: a possible mechanism for immune impairment. Cell Mol Immunol 2015. 12: 580-591.
Tassi, E., Grazia, G., Vegetti, C., Bersani, I., Bertolini, G., Molla, A., Baldassari, P. et al., Early effector T lymphocytes coexpress multiple inhibitory receptors in primary non-small cell lung cancer. Cancer Res. 2017. 77: 851-861.
Rifa'i, M., Kawamoto, Y., Nakashima, I. and Suzuki, H., Essential roles of CD8(+)CD122(+) regulatory T cells in the maintenance of T cell homeostasis. J Experiment Med 2004. 200: 1123-1134.
Shi, Z., Okuno, Y., Rifa'i, M., Endharti, A. T., Akane, K., Isobe, K.-I. and Suzuki, H., Human CD8(+) CXCR3(+) T cells have the same function as murine CD8(+) CD122(+) Treg. Eur. J. Immunol. 2009. 39: 2106-2119.
Chiu, Bo-C, Martin, B. E., Stolberg, V. R. and Chensue, S. W., Cutting edge: central memory CD8 T cells in aged mice are virtual memory cells. J. Immunol. 2013. 191: 5793-5796.
White, J. T., Cross, E. W., Burchill, M. A., Danhorn, T., Mccarter, M. D., Rosen, H. R., O'connor, B. et al., Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat. Commun. 2016. 7: 1-13.
Drobek, A., Moudra, A., Mueller, D., Huranova, M., Horkova, V., Pribikova, M., Ivanek, R. et al., Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J. 2018. 37: e98518.
Haluszczak, C., Akue, A. D., Hamilton, S. E., Johnson, L. D. S., Pujanauski, L., Teodorovic, L., Jameson, S. C. et al., The antigen-specific CD8(+) T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J Experiment Med 2009. 206: 435-448.
Mishra, S., Liao, W., Liu, Y., Yang, M., Ma, C., Wu, H., Zhao, M. et al., TGF-beta and Eomes control the homeostasis of CD8+ regulatory T cells. J. Exp. Med. 2021. 218.
Dai, H., Wan, Ni, Zhang, S., Moore, Y., Wan, F. and Dai, Z., Cutting edge: programmed death-1 defines CD8(+) CD122(+) T cells as regulatory versus memory T cells. J. Immunol. 2010. 185: 803-807.
Elizondo, D. M., Andargie, T. E., Haddock, N. L., Da Silva, R. L. L, Moura, T. R. and Lipscomb, M. W., IL-10 producing CD8(+) CD122(+) PD-1(+) regulatory T cells are expanded by dendritic cells silenced for Allograft Inflammatory Factor-1. J. Leukoc. Biol. 2019. 105: 123-130.
Bahri, R., Bollinger, A., Bollinger, T., Orinska, Z. and Bulfone-Paus, S., Ectonucleotidase CD38 demarcates regulatory, memory-like CD8+ T cells with IFN-gamma-mediated suppressor activities. PLoS One 2012. 7: e45234.
Kim, H.-J., Wang, X., Radfar, S., Sproule, T. J., Roopenian, D. C. and Cantor, H., CD8(+) T regulatory cells express the Ly49 Class I MHC receptor and are defective in autoimmune prone B6-Yaa mice. Proc. Natl Acad. Sci. USA 2011. 108: 2010-2015.
Stocks, B. T., Wilson, C. S., Marshall, A. F., Hoopes, E. M. and Moore, D. J., Regulation of diabetogenic immunity by IL-15-activated regulatory CD8 T cells in Type 1 diabetes. J. Immunol. 2019. 203: 158-166.
Pribikova, M., Moudra, A., Stepanek, O., Opinion: virtual memory CD8 T cells and lymphopenia-induced memory CD8 T cells represent a single subset: homeostatic memory T cells. Immunol. Lett. 2018. 203: 57-61.
White, J. T., Cross, E. W. and Kedl, R. M., Antigen-inexperienced memory CD8(+) T cells: where they come from and why we need them. Nat. Rev. Immunol. 2017. 17: 391-400.
Endharti, A. T., Okuno, Y., Shi, Z., Misawa, N., Toyokuni, S., Ito, M., Isobe, K.-I. et al., CD8(+)CD122(+) Regulatory T cells (Tregs) and CD4(+) Tregs cooperatively prevent and cure CD4(+) cell-induced colitis. J. Immunol. 2011. 186: 41-52.
Lee, Y-Ho, Ishida, Y., Rifa'i, M., Shi, Z., Isobe, K. -. I. and Suzuki, H., Essential role of CD8(+)CD122(+) regulatory T cells in the recovery from experimental autoimmune. J. Immunol. 2008. 180: 825-832.
Akane, K., Kojima, S., Mak, T. W., Shiku, H. and Suzuki, H., CD8(+)CD122(+)CD49d(low) regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity. Proc. Natl Acad. Sci. USA 2016. 113: 2460-2465.
Liu, H., Wang, Y., Zeng, Q., Zeng, Yu-Q, Liang, C.-L., Qiu, F., Nie, H. et al., Suppression of allograft rejection by CD8+CD122+PD-1+Tregs is dictated by their Fas ligand-initiated killing of effector T cells versus Fas-mediated own apoptosis. Oncotarget 2017. 8: 24187-24195.
Dai, Z., Zhang, S., Xie, Q., Wu, S., Su, J., Li, S., Xu, Y. et al., Natural CD8+CD122+T cells are more potent in suppression of allograft rejection than CD4+CD25+regulatory T Cells. Am. J. Transplant. 2014. 14: 39-48.
Shimokawa, C., Kato, T., Takeuchi, T., Ohshima, N., Furuki, T., Ohtsu, Y., Suzue, K. et al., CD8(+) regulatory T cells are critical in prevention of autoimmune-mediated diabetes. Nat. Commun. 2020. 11: 1922.
Lee, J. -Y., Hamilton, S. E., Akue, A. D., Hogquist, K. A. and Jameson, S. C., Virtual memory CD8 T cells display unique functional properties. Proc. Natl Acad. Sci. USA 2013. 110: 13498-13503.
Akue, A D., Lee, J.- Y. and Jameson, S C., Derivation and maintenance of virtual memory CD8 T cells. J. Immunol. 2012. 188: 2516-2523.
Rifa'i, M., Shi, Z., Zhang, S.-Y., Lee, Y Ho, Shiku, H., Isobe, K.-I. and Suzuki, H., CD8(+)CD122(+) regulatory T cells recognize activated T cells via conventional MHC class I-alpha beta TCR interaction and become IL-10-producing active regulatory cells. Internatnl Immunol 2008. 20: 937-947.
Lu, C., Liu, H., Jin, X., Chen, Y., Liang, C.-L., Qiu, F. and Dai, Z., Herbal components of a novel formula PSORI-CM02 interdependently suppress allograft rejection and induce CD8+CD122+PD-1+ regulatory T cells. Front Pharmacol 2018. 9: 88.
Liu, H., Qiu, F., Wang, Y., Zeng, Q., Liu, C., Chen, Y., Liang, C.-L. et al., CD8+CD122+PD-1+ Tregs Synergize with costimulatory blockade of CD40/CD154, but Not B7/CD28, to prolong murine allograft survival. Front. Immunol. 2019. 10: 306.
Arndt, Bo¨R, Witkowski, L., Ellwart, J. and Seissler, J., CD8+ CD122+ PD-1-effector cells promote the development of diabetes in NOD mice. J. Leukoc. Biol. 2015. 97: 111-120.
Wang, Y., Xie, Q., Liang, C.-L., Zeng, Q. and Dai, Z., Chinese medicine Ginseng and Astragalus granules ameliorate autoimmune diabetes by upregulating both CD4+FoxP3+ and CD8+CD122+PD1+ regulatory T cells. Oncotarget 2017. 8: 60201-60209.
Pellegrino, M., Crinò, A., Rosado, M. M. and Fierabracci, A., Identification and functional characterization of CD8+ T regulatory cells in type 1 diabetes patients. PLoS One 2019. 14: e0210839.
Iijima, T., Kato, K., Jojima, T., Tomotsune, T., Fukushima, M., Suzuki, K. and Aso, Y., Circulating CD4+ PD-1+ and CD8+ PD-1+ T cells are profoundly decreased at the onset of fulminant type 1 diabetes and are restored by treatment, contrasting with CD4+ CD25+ FoxP3+ regulatory T cells. Diabetes Res Clin Prac 2017. 133: 10-12.
Schwartz, R. H., Costimulation of lymphocytes-T - the role of Cd28, Ctla-4, and B7/Bb1 in interleukin-2 production and immunotherapy. Cell 1992. 71: 1065-1068.
Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A. and Bluestone, J. A., CD28 Costimulation: from mechanism to therapy. Immunity 2016. 44: 973-988.
Liu, Z., Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8(+)CD28(-) T cells. Internatnl Immunol 1998. 10: 775-783.
Crespo, J., Sun, H., Welling, T. H., Tian, Z. and Zou, W., T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opinion Immunol 2013. 25: 214-221.
Huff, W X., Kwon, J. H., Henriquez, M., Fetcko, K. and Dey, M., The evolving role of CD8(+)CD28(-) immunosenescent T cells in cancer immunology. Int. J. Mol. Sci. 2019. 20: 2810.
Colovai, A. I., Mirza, M., Vlad, G., Wang, S. U, Ho, E., Cortesini, R. and Suciu-Foca, N., Regulatory CD8+CD28-T cells in heart transplant recipients. Hum. Immunol. 2003. 64: 31-37.
Filaci, G., Fravega, M., Negrini, S., Procopio, F., Fenoglio, D., Rizzi, M., Brenci, S. et al., Nonantigen specific CD8(+) T suppressor lymphocytes originate from CD8(+)CD28(-) T cells and inhibit both T-cell proliferation and CTL function. Hum. Immunol. 2004. 65: 142-156.
Filaci, G., Fenoglio, D., Fravega, M., Ansaldo, G., Borgonovo, G., Traverso, P., Villaggio, B. et al., CD8(+)CD28(-) T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J. Immunol. 2007. 179: 4323-4334.
Tulunay, A., Yavuz, S., Direskeneli, H. and Eksioglu-Demiralp, E., CD8(+)CD28(-), suppressive T cells in systemic lupus erythematosus. Lupus 2008. 17: 630-637.
Manavalan, J. S., Kim-Schulze, S., Scotto, L., Naiyer, A. J., Vlad, G., Colombo, P. C., Marboe, C. et al., Alloantigen specific CD8(+)CD28(-) FOXP3(+) T suppressor cells induce ILT3(+) ILT4(+) tolerogenic endothelial cells, inhibiting alloreactivity. Int. Immunol. 2004. 16: 1055-1068.
Scotto, L., Naiyer, A. J., Galluzzo, S., Rossi, P., Manavalan, J. S., Kim-Schulze, S., Fang, J. et al., Overlap between molecular markers expressed by naturally occurring CD4(+)CD(25+) regulatory T cells and antigen specific CD4+CD25+ and CD8+CD28- T suppressor cells. Hum. Immunol. 2004. 65: 1297-1306.
Li, G., Larregina, A. T., Domsic, R. T., Stolz, D. B., Medsger, T. A., Lafyatis, R. and Fuschiotti, P., Skin-resident effector memory CD8(+) CD28(-) T cells exhibit a profibrotic phenotype in patients with systemic sclerosis. J Investigat Dermatol 2017. 137: 1042-1050.
Weng, N. -P., Akbar, A. N. and Goronzy, J., CD28(-) T cells: their role in the age-associated decline of immune function. Trends Immunol. 2009. 30: 306-312.
Karagöz, B., Bilgi, O., Gümüs, M., Erikçi, A. A., Sayan, Ö., Türken, O., Kandemir, E. G. et al., CD8+CD28-cells and CD4+CD25+regulatory T cells in the peripheral blood of advanced stage lung cancer patients. Med. Oncol. 2010. 27: 29-33.
Meloni, F., Morosini, M., Solari, N., Passadore, I., Nascimbene, C., Novo, M., Ferrari, M. et al., Foxp3 expressing CD4(+) CD25(+) and CD8(+)CD28(-) T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum. Immunol. 2006. 67: 1-12.
Sun, Z., Zhong, W., Lu, X., Shi, B., Zhu, Y., Chen, L., Zhang, G. et al., Association of Graves' disease and prevalence of circulating IFN-gamma-producing CD28(-) T cells. J. Clin. Immunol. 2008. 28: 464-472.
Schirmer, M., Goldberger, C., Würzner, R., Duftner, C., Pfeiffer, K.-P., Clausen, J., Neumayr, G. et al., Circulating cytotoxic CD8(+) CD28(-) T cells in ankylosing spondylitis. Arthritis Res. 2002. 4: 71-76.
Fenoglio, D., Dentone, C., Signori, A., Di Biagio, A., Parodi, A., Kalli, F., Nasi, G. et al., CD8(+)CD28(-)CD127(lo)CD39(+) regulatory T-cell expansion: a new possible pathogenic mechanism for HIV infection? J. Allergy Clin. Immunol. 2018. 141: 2220-2233.e4 e4.
Vivar, N., Thang, P. H., Atlas, A., Chiodi, F. and Rethi, B., Potential role of CD8+CD28- T lymphocytes in immune activation during HIV-1 infection. AIDS 2008. 22: 1083-1086.
Pandya, J. M., Venalis, P., Al-Khalili, L., Shahadat Hossain, M., Stache, V., Lundberg, I. E., Malmström, V. et al., CD4+and CD8+CD28(null) T cells are cytotoxic to autologous muscle cells in patients with polymyositis. Arth Rheumatol 2016. 68: 2016-2026.
Engela, A. U., Baan, C. C., Litjens, N. H. R., Franquesa, M., Betjes, M. G. H., Weimar, W. and Hoogduijn, M. J., Mesenchymal stem cells control alloreactive CD8(+)CD28(-) T cells. Clin Experiment Immunol 2013. 174: 449-458.
Mikulkova, Z., Praksova, P., Stourac, P., Bednarik, J., Strajtova, L., Pacasova, R., Belobradkova, J. et al., Numerical defects in CD8+CD28- T-suppressor lymphocyte population in patients with type 1 diabetes mellitus and multiple sclerosis. Cell. Immunol. 2010. 262: 75-79.
Tsukishiro, T., Donnenberg, A. D. and Whiteside, T L., Rapid turnover of the CD8(+)CD28(-) T-cell subset of effector cells in the circulation of patients with head and neck cancer. Cancer Immunol. Immunother. 2003. 52: 599-607.
Casado, J G., Soto, R., Delarosa, O., Peralbo, E., Muñoz-Villanueva, M. D. C., Rioja, L., Peña, J. et al., CD8 T cells expressing NK associated receptors are increased in melanoma patients and display an effector phenotype. Cancer Immunol. Immunother. 2005. 54: 1162-1171.
Geng, L., Liu, J., Huang, J., Lin, B., Yu, S., Shen, T., Wang, Z. et al., A high frequency of CD8(+)CD28(-) T-suppressor cells contributes to maintaining stable graft function and reducing immunosuppressant dosage after liver transplantation. Int. J. Med. Sci. 2018. 15: 892-899.
Zhang, Li, Bertucci, A. M., Ramsey-Goldman, R., Burt, R. K. and Datta, S. K., Regulatory T cell (Treg) subsets return in patients with refractory lupus following stem cell transplantation, and TGF-beta-producing CD8+ Treg cells are associated with immunological remission of lupus. J. Immunol. 2009. 183: 6346-6358.
Feng, Fu, Liu, Y., Liu, G., Zhu, P., Zhu, M., Zhang, H., Lu, X. et al., Human CD8(+)CD28(-) T suppressor cells expanded by IL-15 in vitro suppress in an allospecific and programmed cell death protein 1-dependent manner. Front. Immunol. 2018. 9: 1442.
Maybruck, B. T., Pfannenstiel, L. W., Diaz-Montero, M. and Gastman, B, R., Tumor-derived exosomes induce CD8(+) T cell suppressors. J. Immunother. Cancer 2017. 5: 65.
Pomie, C., Vicente, R., Vuddamalay, Y., Lundgren, B. A., Van Der Hoek, M., Enault, G., Kagan, J. et al., Autoimmune regulator (AIRE)-deficient CD8(+)CD28(low) regulatory T lymphocytes fail to control experimental colitis. Proc. Nat. Acad. Sci. U.S.A. 2011. 108: 12437-12442.
Vuddamalay, Y., Attia, M., Vicente, R., Pomié, C., Enault, G., Leobon, B., Joffre, O. et al., Mouse and human CD8(+) CD28(low) regulatory T lymphocytes differentiate in the thymus. Immunology 2016. 148: 187-196.
Ménager-Marcq, I., Pomié, C., Romagnoli, P. and Van Meerwijk, J. P. M., CD8(+)CD28(-) regulatory T lymphocytes prevent experimental inflammatory bowel disease in mice. Gastroenterology 2006. 131: 1775-1785.
Najafian, N., Chitnis, T., Salama, A. D., Zhu, B., Benou, C., Yuan, X., Clarkson, M. R. et al., Regulatory functions of CD8(+)CD28(-) T cells in an autoimmune disease model. J Clin Investigat 2003. 112: 1037-1048.
Mangalam, A K., Luckey, D., Giri, S., Smart, M., Pease, L. R., Rodriguez, M. and David, C. S., Two discreet subsets of CD8 T cells modulate PLP91-110 induced experimental autoimmune encephalomyelitis in HLA-DR3 transgenic mice. J Autoimmunity 2012. 38: 344-353.
Strioga, M., Pasukoniene, V. and Characiejus, D., CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. Immunology 2011. 134: 17-32.
Hermiston, M L., Xu, Z. and Weiss, A., CD45: a critical regulator of signaling thresholds in immune cells. Ann Rev Immunol 2003. 21: 107-137.
Courtney, A. H., Shvets, A. A., Lu, W., Griffante, G., Mollenauer, M., Horkova, V., Lo, W. et al., CD45 functions as a signaling gatekeeper in T cells. Sci. Signal 2019. 12: eaaw8151.
Xystrakis, E., Cavailles, P., Dejean, A S., Cautain, B., Colacios, C., Lagrange, D., Van De Gaar, M.-J. et al., Functional and genetic analysis of two CD8 T cell subsets defined by the level of CD45RC expression in the rat. J. Immunol. 2004. 173: 3140-3147.
Xystrakis, E., Dejean, A S., Bernard, I., Druet, P., Liblau, R., Gonzalez-Dunia, D. and Saoudi, A., Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood 2004. 104: 3294-3301.
Han, G., Shao, H., Peng, Y., Zhang, P., Ke, Y., Kaplan, H J. and Sun, D., Suppressor role of rat CD8(+)CD45RC(low) T cells in experimental autoimmune uveitis (EAU). J. Neuroimmunol. 2007. 183: 81-88.
Picarda, E., Bézie, S., Boucault, L., Autrusseau, E., Kilens, S., Meistermann, D., Martinet, B. et al., Transient antibody targeting of CD45RC induces transplant tolerance and potent antigen-specific regulatory T cells. Jci Insight 2017. 2: 20.
Ordonez, L., Bernard, I., Chabod, M., Augusto, J. F., Lauwers-Cances, V., Cristini, C., Cuturi, M. C. et al., A higher risk of acute rejection of human kidney allografts can be predicted from the level of CD45RC expressed by the recipients' CD8 T cells. PLoS One 2013.8: e69791.
Ordonez, L., Bernard, I., L'faqihi-Olive, F. -E., Tervaert, J. W. C., Damoiseaux, J. and Saoudi, A., CD45RC isoform expression identifies functionally distinct T cell subsets differentially distributed between healthy individuals and AAV patients. PLoS One 2009. 4: e5287.
Bézie, S., Meistermann, D., Boucault, L., Kilens, S., Zoppi, J., Autrusseau, E., Donnart, A. et al., Ex vivo expanded human non-cytotoxic CD8(+)CD45RC(low/-) Tregs efficiently delay skin graft rejection and GVHD in humanized mice. Front. Immunol. 2017. 8: 2014.
Lemerle, M., Garnier, A.-S., Planchais, M., Brilland, B., Subra, Y., Blanchet, J. -F., Blanchard, O. et al., CD45RC expression of circulating CD8(+) T cells predicts acute allograft rejection: a cohort study of 128 kidney transplant patients. J. Clin. Med. 2019. 8: 1147.
Garnier, A.-S., Planchais, M., Riou, J., Jacquemin, C., Ordonez, L., Saint-André, J.-P., Croue, A. et al., Pre-transplant CD45RC expression on blood T cells differentiates patients with cancer and rejection after kidney transplantation. PLoS One 2019. 14: e0214321.
Ouisse, L. H., Remy, S., Lafoux, A., Larcher, T., Tesson, L., Chenouard, V., Guillonneau, C. et al., Immunophenotype of a rat model of Duchenne's disease and demonstration of improved muscle strength after anti-CD45RC antibody treatment. Front. Immunol. 2019. 10: 2131.
Guillonneau, C., Hill, M., Hubert, F.-X., Chiffoleau, E., Hervé, C., Li, X. -L., Heslan, M. et al., CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J. Clin. Invest. 2007. 117: 1096-1106.
Bézie, S., Picarda, E., Ossart, J., Tesson, L., Usal, C., Renaudin, K., Anegon, I. et al., IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Investigat 2015. 125: 3952-3964.
Li, X. L., Ménoret, S., Bezie, S., Caron, L., Chabannes, D., Hill, M., Halary, F. et al., Mechanism and localization of CD8 regulatory T cells in a heart transplant model of tolerance. J. Immunol. 2010. 185: 823-833.
Rogers, N. M., Isenberg, J. S. and Thomson, A. W., Plasmacytoid dendritic cells: no longer an enigma and now key to transplant tolerance? Am. J. Transplant. 2013. 13: 1125-1133.
Cheroutre, H., Lambolez, F. and Mucida, D., The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 2011. 11: 445-456.
Tang, X., Maricic, I., Purohit, N., Bakamjian, B., Reed-Loisel, L M., Beeston, T., Jensen, P. et al., Regulation of immunlity by a novel population of Qa-1-restricted CD8 alpha alpha+TCR alpha beta(+) T cells. J. Immunol. 2006. 177: 7645-7655.
Sheng, H., Marrero, I., Maricic, I., Fanchiang, S. S., Zhang, S., Sant'angelo, D. B. and Kumar, V., Distinct PLZF(+)CD8alphaalpha(+) unconventional T cells enriched in liver use a cytotoxic mechanism to limit autoimmunity. J. Immunol. 2019. 203: 2150-2162.
Park, J. E., Botting, R. A., Domínguez Conde, C., Popescu, D. M., Lavaert, M., Kunz, D. J., Goh, I. et al., A cell atlas of human thymic development defines T cell repertoire formation. Science 2020. 367: eaay3224.
Mondoon, S., Shibata, K. and Yoshikai, Y., In vivo blockade of T cell development reveals alternative pathways for generation of intraepithelial lymphocytes in mice. Immunol. Lett. 2017. 191: 40-46.
Sujino, T., London, M., Hoytema Van Konijnenburg, D. P., Rendon, T., Buch, T., Silva, H. M., Lafaille, J. J. et al., Tissue adaptation of regulatory and intraepithelial CD4(+) T cells controls gut inflammation. Science 2016. 352: 1581-1586.
Ruscher, R., Kummer, R. L., Lee, Y. J., Jameson, S. C. and Hogquist, K. A., CD8 alpha alpha intraepithelial lymphocytes arise from two main thymic precursors. Nat. Immunol. 2017. 18: 771.
Owen, D. L., Mahmud, S. A., Sjaastad, L. E., Williams, J. B., Spanier, J. A., Simeonov, D. R., Ruscher, R. et al., Thymic regulatory T cells arise via two distinct developmental programs. Nat. Immunol. 2019. 20: 195-205.
Nambu, Y., Hayashi, T., Jang, K.- J., Aoki, K., Mano, H., Nakano, K., Osato, M. et al., In situ differentiation of CD8 alpha alpha T cells from CD4 T cells in peripheral lymphoid tissues. Sci. Rep. 2012. 2: 11.
Poussier, P., Ning, T., Banerjee, D. and Julius, M., A unique subset of self-specific intraintestinal T cells maintains gut integrity. J. Experiment Med. 2002. 195: 1491-1497.
Ostanin, D. V., Brown, C. M., Gray, L., Bharwani, S. and Grisham, M. B., Evaluation of the immunoregulatory activity of intraepithelial lymphocytes in a mouse model of chronic intestinal inflammation. Int. Immunol. 2010. 22: 927-939.
Cervantes-Barragan, L., Chai, J. N., Tianero, Ma. D, Di Luccia, B., Ahern, P. P., Merriman, J., Cortez, V. S. et al., Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha(+) T cells. Science 2017. 357: 806-810.
Reis, B. S., Rogoz, A., Costa-Pinto, F. A., Taniuchi, I. and Mucida, D., Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4(+) T cell immunity. Nat. Immunol. 2013. 14: 271-280.
Mucida, D., Husain, M. M., Muroi, S., Van Wijk, F., Shinnakasu, R., Naoe, Y., Reis, B. S. et al., Transcriptional reprogramming of mature CD4(+) helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 2013. 14: 281-289.
Das, G., Augustine, M. M., Das, J., Bottomly, K., Ray, P. and Ray, A., An important regulatory role for CD4+CD8 alpha alpha T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. Proc Natl Acad Sci USA 2003. 100: 5324-5329.
Steenholt, J. V., Nielsen, C., Baudewijn, L., Staal, A., Rasmussen, K. S., Sabir, H. J., Barington, T. et al., The composition of T cell subtypes in duodenal biopsies are altered in coeliac disease patients. PLoS One 2017. 12: e0170270.
Carton, J., Byrne, B., Madrigal-Estebas, L., O'donoghue, D. P. and O'farrelly, C., CD4+CD8+ human small intestinal T cells are decreased in coeliac patients, with CD8 expression downregulated on intra-epithelial T cells in the active disease. Eur. J. Gastroenterol. Hepatol. 2004. 16: 961-968.
Tang, X., Maricic, I. and Kumar, V., Anti-TCR antibody treatment activates a novel population of nonintestinal CD8 alpha alpha+TCR alpha beta(+) regulatory T cells and prevents experimental autoimmune encephalomyelitis. J. Immunol. 2007. 178: 6043-6050.
Nakagawa, H., Wang, L., Cantor, H. and Kim, H. J., New insights into the biology of CD8 regulatory T cells. Adv. Immunol. 2018. 140: 1-20.
Kim, H.-J., Verbinnen, B., Tang, X., Lu, L. and Cantor, H., Inhibition of follicular T-helper cells by CD8(+) regulatory T cells is essential for self- tolerance. Nature 2010. 467: 328-332.
Van Montfoort, N., Borst, L., Korrer, M. J., Sluijter, M., Marijt, K. A., Santegoets, S. J., Van Ham, V. J. et al., NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 2018. 175: 1744-1755.
Bian, Y., Shang, S., Siddiqui, S., Zhao, J., Joosten, S. A., Ottenhoff, T. H. M., Cantor, H. et al., MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection. PLoS Pathog. 2017. 13: e1006384.
Varthaman, A., Khallou-Laschet, J., Clement, M., Fornasa, G., Kim, H. -. J., Gaston, A. - T., Dussiot, M. et al., Control of T cell reactivation by regulatory Qa-1-restricted CD8(+) T cells. J. Immunol. 2010. 184: 6585-6591.
Stocks, B. T., Wilson, C. S., Marshall, A. F., Brewer, L. A. and Moore, D. J., Host expression of the CD8 Treg/NK cell restriction element Qa-1 is dispensable for transplant tolerance. Sci. Rep. 2017. 7: 11181.
Hu, D., Ikizawa, K., Lu, L., Sanchirico, M. E., Shinohara, M. L. and Cantor, H., Analysis of regulatory CD8 T cells in Qa-1-deficient mice. Nat. Immunol. 2004. 5: 516-523.
Lu, L., Kim, H.-J., Werneck, M. B. F. and Cantor, H., Regulation of CD8+ regulatory T cells: Interruption of the NKG2A-Qa-1 interaction allows robust suppressive activity and resolution of autoimmune disease. Proc. Natl. Acad. Sci. USA 2008. 105: 19420-19425.
Choi, J Y., Eskandari, S K., Cai, S., Sulkaj, I., Assaker, J. P., Allos, H., Alhaddad, J. et al., Regulatory CD8 T cells that recognize Qa-1 expressed by CD4 T-helper cells inhibit rejection of heart allografts. Proc. Natl Acad. Sci. USA 2020. 117: 6042-6046.
Anderson, C. K., Reilly, E. C., Lee, A. Y. and Brossay, L., Qa-1-restricted CD8(+) T cells can compensate for the absence of conventional T cells during viral infection. Cell Rep. 2019. 27: 537.
Goodall, K. J., Nguyen, A., Mckenzie, C., Eckle, S. B. G., Sullivan, L. C. and Andrews, D. M., The murine CD94/NKG2 ligand, Qa-1(b), is a high-affinity, functional ligand for the CD8alpha-alpha homodimer. J. Biol. Chem. 2020. 295: 3239-3246.
Beeston, T., Smith, T R.F., Maricic, I., Tang, X. and Kumar, V., Involvement of IFN-gamma and perforin, but not Fas/FasL interactions in regulatory T cell-mediated suppression of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2010. 229: 91-97.
Jiang, H., Canfield, S. M., Gallagher, M. P., Jiang, H. H., Jiang, Y., Zheng, Z. and Chess, L., HLA-E-restricted regulatory CD8(+) T cells are involved in development and control of human autoimmune type 1 diabetes. J. Clin. Invest. 2010. 120: 3641-3650.
Jørgensen, P. B., Livbjerg, A. H., Hansen, H. J., Petersen, T. and Höllsberg, P., Epstein-Barr virus peptide presented by HLA-E is predominantly recognized by CD8(bright) cells in multiple sclerosis patients. PLoS One 2012. 7: e46120.
Correale, J. and Villa, A., Isolation and characterization of CD8+ regulatory T cells in multiple sclerosis. J. Neuroimmunol. 2008. 195: 121-134.
Essawy, B El, Putheti, P., Gao, W. and Strom, T.B., Rapamycin generates graft-homing murine suppressor CD8(+) T cells that confer donor-specific graft protection. Cell Transplant. 2011. 20: 1759-1769.
Notley, C. A., Mccann, F. E., Inglis, J. J. and Williams, R. O., ANTI-CD3 therapy expands the numbers of CD4+ and CD8+ Treg cells and induces sustained amelioration of collagen-induced arthritis. Arthr Rheum 2010. 62: 171-178.
Endharti, A. T., Rifa’, M., Shi, Z., Fukuoka, Y., Nakahara, Y., Kawamoto, Y., Takeda, K. et al., Cutting edge: CD8(+)CD122(+) regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8(+) T cells. J. Immunol. 2005. 175: 7093-7097.