CD8+ Tregs revisited: A heterogeneous population with different phenotypes and properties

. 2021 Mar ; 51 (3) : 512-530. [epub] 20210219

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33501647

Regulatory T cells (Tregs) play a key role in the peripheral self-tolerance and preventing autoimmunity. While classical CD4+ Foxp3+ Tregs are well established, their CD8+ counterparts are still controversial in many aspects including their phenotypic identity and their mechanisms of suppression. Because of these controversies and because of only a limited number of studies documenting the immunoregulatory function of CD8+ Tregs in vivo, the concept of CD8+ Tregs is still not unanimously accepted. We propose that any T-cell subset considered as true regulatory must be distinguishable from other cell types and must suppress in vivo immune responses via a known mechanism. In this article, we revisit the concept of CD8+ Tregs by focusing on the characterization of individual CD8+ T-cell subsets with proposed regulatory capacity separately. Therefore, we review the phenotype and function of CD8+ FOXP3+ T cells, CD8+ CD122+ T cells, CD8+ CD28low/- T cells, CD8+ CD45RClow T cells, T cells expressing CD8αα homodimer and Qa-1-restricted CD8+ T cells to show whether there is sufficient evidence to establish these subsets as bona fide Tregs. Based on the intrinsic ability of CD8+ Treg subsets to promote immune tolerance in animal models, we elaborate on their potential use in clinics.

Zobrazit více v PubMed

Gershon, R. K. and Kondo, K., Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 1970. 18: 723-737.

Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. and Toda, M., Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 1995. 155: 1151-1164.

Fontenot, J. D., Gavin, M. A. and Rudensky, A. Y., Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 2003. 4: 330-336.

Flippe, L., Bézie, S., Anegon, I. and Guillonneau, C., Future prospects for CD8(+) regulatory T cells in immune tolerance. Immunol. Rev. 2019. 292: 209-224.

Vieyra-Lobato, M. R., Vela-Ojeda, J., Montiel-Cervantes, L., López-Santiago, R. and Moreno-Lafont, M. C., Description of CD8(+) regulatory T lymphocytes and their specific intervention in graft-versus-host and infectious diseases, autoimmunity, and cancer. J Immunol Res 2018. 2018: 1-16.

Yu, Y. T., Yu, Y., Ma, X., Gong, R., Zhu, J., Wei, L. and Yao, J., Recent advances in CD8(+) regulatory T cell research (Review). Oncol. Lett. 2018. 15: 8187-8194.

Kedia-Mehta, N. and Finlay, D. K., Competition for nutrients and its role in controlling immune responses. Nat. Commun. 2019. 10: 1-8.

Klein, L., Khazaie, K. and Von Boehmer, H., In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc Natl Acad Sci USA 2003. 100: 8886-8891.

Chaput, N., Louafi, S., Bardier, A., Charlotte, F., Vaillant, J. -C., Menegaux, F., Rosenzwajg, M. et al., Identification of CD8(+)CD25(+)Foxp3(+) suppressive T cells in colorectal cancer tissue. Gut 2009. 58: 520-529.

Ablamunits, V., Bisikirska, B. and Herold, K. C., Acquisition of regulatory function by human CD8(+) T cells treated with anti-CD3 antibody requires TNF. Eur. J. Immunol. 2010. 40: 2891-2901.

Aoyama, A., Klarin, D., Yamada, Y., Boskovic, S., Nadazdin, O., Kawai, K., Schoenfeld, D. et al., Low-dose IL-2 for In vivo expansion of CD4+ and CD8+ regulatory T cells in nonhuman primates. Am. J. Transplant. 2012. 12: 2532-2537.

Churlaud, G., Pitoiset, F., Jebbawi, F., Lorenzon, R., Bellier, B., Rosenzwajg, M., Klatzmann, D. et al., Human and mouse CD8(+)CD25(+)FOXP3(+) regulatory T cells at steady state and during interleukin-2 therapy. Front. Immunol 2015. 6: 10.

Chen, J., Zhou, Y., Chen, S., Liu, M., Guo, W., Wang, Q., Su, X. et al., Lkb1 in dendritic cells restricts CD8(+)Foxp3(+)regulatory T cells expansion in vivo. Exp. Cell Res. 2019. 384: 111650.

Iamsawat, S., Tian, L., Daenthanasanmak, A., Wu, Y., Nguyen, H. D., Bastian, D. and Yu, X.-Z., Vitamin C stabilizes CD8(+) iTregs and enhances their therapeutic potential in controlling murine GVHD and leukemia relapse. Blood Advances 2019. 3: 4187-4201.

Sun, J., Yang, Y., Huo, X., Zhu, B., Li, Z., Jiang, X., Xie, R. et al., Efficient therapeutic function and mechanisms of human polyclonal CD8(+)CD103(+)Foxp3(+) regulatory T cells on collagen-induced arthritis in mice. J Immunol Res 2019. 2019: 8575407.

Singh, R. P., La Cava, A., Wong, M., Ebling, F. and Hahn, B. H., CD8+ T cell-mediated suppression of autoimmunity in a murine lupus model of peptide-induced immune tolerance depends on Foxp3 expression. J. Immunol. 2007. 178: 7649-7657.

Hahn, B. H., Singh, R. P., La Cava, A. and Ebling, F M., Tolerogenic treatment of lupus mice with consensus peptide induces Foxp3-expressing, apoptosis-resistant, TGF beta-secreting CD8+ T cell suppressors. J. Immunol. 2005. 175: 7728-7737.

Beres, A. J., Haribhai, D., Chadwick, A. C., Gonyo, P J., Williams, C. B., and Drobyski, W. R., CD8(+) Foxp3(+) Regulatory T cells are induced during graft-versus-host disease and mitigate disease severity. J. Immunol. 2012. 189: 464-474.

Agle, K., Vincent, B. G., Piper, C., Belle, L., Zhou, V., Shlomchik, W., Serody, J. S. et al., Bim regulates the survival and suppressive capability of CD8(+) FOXP3(+) regulatory T cells during murine GVHD. Blood 2018. 132: 435-447.

Mayer, C. T., Floess, S., Baru, A. M., Lahl, K., Huehn, J. and Sparwasser, T., CD8(+)Foxp3(+) T cells share developmental and phenotypic features with classical CD4(+)Foxp3(+) regulatory T cells but lack potent suppressive activity. Eur. J. Immunol. 2011. 41: 716-725.

Fontenot, J. D., Rasmussen, J. P., Williams, L. M., Dooley, J. L., Farr, A. G. and Rudensky, A. Y., Regulatory T cell lineage specification by the forkhead transcription factor FoxP3. Immunity 2005. 22: 329-341.

Peng, L. -S., Zhuang, Y., Shi, Y., Zhao, Y.-L., Wang, T.-T., Chen, Na, Cheng, P. et al., Increased tumor-infiltrating CD8(+)Foxp3(+) T lymphocytes are associated with tumor progression in human gastric cancer. Cancer Immunol Immunotherap 2012. 61: 2183-2192.

Lerret, N. M, Houlihan, J. L, Kheradmand, T., Pothoven, K. L, Zhang, Z. J and Luo, X., Donor-specific CD8(+)Foxp3(+) T cells protect skin allografts and facilitate induction of conventional CD4(+)Foxp3(+) regulatory T cells. Am J Transplantat 2012. 12: 2335-2347.

Eusebio, M., Kraszula, L., Kupczyk, M., Kuna, P. and Pietruczuk, M., Low frequency of CD8+CD25+FOXP3(BRIGHT) T cells and FOXP3 mRNA expression in the peripheral blood of allergic asthma patients. J. Biol. Regul. Homeost. Agents 2012. 26: 211-220.

Frisullo, G., Nociti, V., Iorio, R., Plantone, D., Patanella, A. K, Tonali, P A. and Batocchi, A. P., CD8(+)Foxp3(+) T cells in peripheral blood of relapsing-remitting multiple sclerosis patients. Hum. Immunol. 2010. 71: 437-441.

Kiniwa, Y., Miyahara, Y., Wang, H. Y., Peng, W., Peng, G., Wheeler, T. M., Thompson, T. C. et al., CD8(+) Foxp3(+) regulatory T cells mediate immunosuppression in prostate cancer. Clin. Cancer Res. 2007. 13: 6947-6958.

Karlsson, I., Malleret, B., Brochard, P., Delache, Benoît, Calvo, J., Le Grand, R. and Vaslin, B., FoxP3+ CD25+ CD8+ T-cell induction during primary simian immunodeficiency virus infection in cynomolgus macaques correlates with low CD4+ T-cell activation and high viral load. J. Virol. 2007. 81: 13444-13455.

Iamsawat, S., Daenthanasanmak, A., Voss, J. H., Nguyen, H., Bastian, D., Liu, C. and Yu, X.-Z., Stabilization of Foxp3 by targeting JAK2 enhances efficacy of cd8 induced regulatory T cells in the prevention of graft-versus-host disease. J. Immunol. 2018. 201: 2812-2823.

Correale, J. and Villa, A., Role of CD8+CD25+Foxp3+Regulatory T cells in multiple sclerosis. Annal Neurol 2010. 67: 625-638.

Mahic, M., Henjum, K., Yaqub, S., Bjørnbeth, B. A., Torgersen, K. M., Taskén, K. and Aandahl, E. M., Generation of highly suppressive adaptive CD8(+)CD25(+)FOXP3(+) regulatory T cells by continuous antigen stimulation. Eur. J. Immunol. 2008. 38: 640-646.

Wen, Z., Shimojima, Y., Shirai, T., Li, Y., Ju, J., Yang, Z., Tian, Lu et al., NADPH oxidase deficiency underlies dysfunction of aged CD8(+) Tregs. J Clin Investigat 2016. 126: 1953-1967.

Pillai, V., Ortega, S. B., Wang, C. K. and Karandikar, N. J., Transient regulatory T-cells: a state attained by all activated human T-cells. Clin. Immunol. 2007. 123: 18-29.

Heeren, A. M., Rotman, J., Stam, A. G. M., Pocorni, N., Gassama, A. A., Samuels, S., Bleeker, M. C. G. et al., Efficacy of PD-1 blockade in cervical cancer is related to a CD8(+)FoxP3(+)CD25(+) T-cell subset with operational effector functions despite high immune checkpoint levels. J Immunotherap Cancer 2019. 7: 43.

Anichini, A., Molla, A., Vegetti, C., Bersani, I., Zappasodi, R., Arienti, F., Ravagnani, F. et al., Tumor-reactive CD8(+) early effector T cells identified at tumor site in primary and metastatic melanoma. Cancer Res. 2010. 70: 8378-8387.

Zhang, S. P., Ke, X., Zeng, S., Wu, M., Lou, J., Wu, L., Huang, P. et al., Analysis of CD8(+) Treg cells in patients with ovarian cancer: a possible mechanism for immune impairment. Cell Mol Immunol 2015. 12: 580-591.

Tassi, E., Grazia, G., Vegetti, C., Bersani, I., Bertolini, G., Molla, A., Baldassari, P. et al., Early effector T lymphocytes coexpress multiple inhibitory receptors in primary non-small cell lung cancer. Cancer Res. 2017. 77: 851-861.

Rifa'i, M., Kawamoto, Y., Nakashima, I. and Suzuki, H., Essential roles of CD8(+)CD122(+) regulatory T cells in the maintenance of T cell homeostasis. J Experiment Med 2004. 200: 1123-1134.

Shi, Z., Okuno, Y., Rifa'i, M., Endharti, A. T., Akane, K., Isobe, K.-I. and Suzuki, H., Human CD8(+) CXCR3(+) T cells have the same function as murine CD8(+) CD122(+) Treg. Eur. J. Immunol. 2009. 39: 2106-2119.

Chiu, Bo-C, Martin, B. E., Stolberg, V. R. and Chensue, S. W., Cutting edge: central memory CD8 T cells in aged mice are virtual memory cells. J. Immunol. 2013. 191: 5793-5796.

White, J. T., Cross, E. W., Burchill, M. A., Danhorn, T., Mccarter, M. D., Rosen, H. R., O'connor, B. et al., Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat. Commun. 2016. 7: 1-13.

Drobek, A., Moudra, A., Mueller, D., Huranova, M., Horkova, V., Pribikova, M., Ivanek, R. et al., Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells. EMBO J. 2018. 37: e98518.

Haluszczak, C., Akue, A. D., Hamilton, S. E., Johnson, L. D. S., Pujanauski, L., Teodorovic, L., Jameson, S. C. et al., The antigen-specific CD8(+) T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J Experiment Med 2009. 206: 435-448.

Mishra, S., Liao, W., Liu, Y., Yang, M., Ma, C., Wu, H., Zhao, M. et al., TGF-beta and Eomes control the homeostasis of CD8+ regulatory T cells. J. Exp. Med. 2021. 218.

Dai, H., Wan, Ni, Zhang, S., Moore, Y., Wan, F. and Dai, Z., Cutting edge: programmed death-1 defines CD8(+) CD122(+) T cells as regulatory versus memory T cells. J. Immunol. 2010. 185: 803-807.

Elizondo, D. M., Andargie, T. E., Haddock, N. L., Da Silva, R. L. L, Moura, T. R. and Lipscomb, M. W., IL-10 producing CD8(+) CD122(+) PD-1(+) regulatory T cells are expanded by dendritic cells silenced for Allograft Inflammatory Factor-1. J. Leukoc. Biol. 2019. 105: 123-130.

Bahri, R., Bollinger, A., Bollinger, T., Orinska, Z. and Bulfone-Paus, S., Ectonucleotidase CD38 demarcates regulatory, memory-like CD8+ T cells with IFN-gamma-mediated suppressor activities. PLoS One 2012. 7: e45234.

Kim, H.-J., Wang, X., Radfar, S., Sproule, T. J., Roopenian, D. C. and Cantor, H., CD8(+) T regulatory cells express the Ly49 Class I MHC receptor and are defective in autoimmune prone B6-Yaa mice. Proc. Natl Acad. Sci. USA 2011. 108: 2010-2015.

Stocks, B. T., Wilson, C. S., Marshall, A. F., Hoopes, E. M. and Moore, D. J., Regulation of diabetogenic immunity by IL-15-activated regulatory CD8 T cells in Type 1 diabetes. J. Immunol. 2019. 203: 158-166.

Pribikova, M., Moudra, A., Stepanek, O., Opinion: virtual memory CD8 T cells and lymphopenia-induced memory CD8 T cells represent a single subset: homeostatic memory T cells. Immunol. Lett. 2018. 203: 57-61.

White, J. T., Cross, E. W. and Kedl, R. M., Antigen-inexperienced memory CD8(+) T cells: where they come from and why we need them. Nat. Rev. Immunol. 2017. 17: 391-400.

Endharti, A. T., Okuno, Y., Shi, Z., Misawa, N., Toyokuni, S., Ito, M., Isobe, K.-I. et al., CD8(+)CD122(+) Regulatory T cells (Tregs) and CD4(+) Tregs cooperatively prevent and cure CD4(+) cell-induced colitis. J. Immunol. 2011. 186: 41-52.

Lee, Y-Ho, Ishida, Y., Rifa'i, M., Shi, Z., Isobe, K. -. I. and Suzuki, H., Essential role of CD8(+)CD122(+) regulatory T cells in the recovery from experimental autoimmune. J. Immunol. 2008. 180: 825-832.

Akane, K., Kojima, S., Mak, T. W., Shiku, H. and Suzuki, H., CD8(+)CD122(+)CD49d(low) regulatory T cells maintain T-cell homeostasis by killing activated T cells via Fas/FasL-mediated cytotoxicity. Proc. Natl Acad. Sci. USA 2016. 113: 2460-2465.

Liu, H., Wang, Y., Zeng, Q., Zeng, Yu-Q, Liang, C.-L., Qiu, F., Nie, H. et al., Suppression of allograft rejection by CD8+CD122+PD-1+Tregs is dictated by their Fas ligand-initiated killing of effector T cells versus Fas-mediated own apoptosis. Oncotarget 2017. 8: 24187-24195.

Dai, Z., Zhang, S., Xie, Q., Wu, S., Su, J., Li, S., Xu, Y. et al., Natural CD8+CD122+T cells are more potent in suppression of allograft rejection than CD4+CD25+regulatory T Cells. Am. J. Transplant. 2014. 14: 39-48.

Shimokawa, C., Kato, T., Takeuchi, T., Ohshima, N., Furuki, T., Ohtsu, Y., Suzue, K. et al., CD8(+) regulatory T cells are critical in prevention of autoimmune-mediated diabetes. Nat. Commun. 2020. 11: 1922.

Lee, J. -Y., Hamilton, S. E., Akue, A. D., Hogquist, K. A. and Jameson, S. C., Virtual memory CD8 T cells display unique functional properties. Proc. Natl Acad. Sci. USA 2013. 110: 13498-13503.

Akue, A D., Lee, J.- Y. and Jameson, S C., Derivation and maintenance of virtual memory CD8 T cells. J. Immunol. 2012. 188: 2516-2523.

Rifa'i, M., Shi, Z., Zhang, S.-Y., Lee, Y Ho, Shiku, H., Isobe, K.-I. and Suzuki, H., CD8(+)CD122(+) regulatory T cells recognize activated T cells via conventional MHC class I-alpha beta TCR interaction and become IL-10-producing active regulatory cells. Internatnl Immunol 2008. 20: 937-947.

Lu, C., Liu, H., Jin, X., Chen, Y., Liang, C.-L., Qiu, F. and Dai, Z., Herbal components of a novel formula PSORI-CM02 interdependently suppress allograft rejection and induce CD8+CD122+PD-1+ regulatory T cells. Front Pharmacol 2018. 9: 88.

Liu, H., Qiu, F., Wang, Y., Zeng, Q., Liu, C., Chen, Y., Liang, C.-L. et al., CD8+CD122+PD-1+ Tregs Synergize with costimulatory blockade of CD40/CD154, but Not B7/CD28, to prolong murine allograft survival. Front. Immunol. 2019. 10: 306.

Arndt, Bo¨R, Witkowski, L., Ellwart, J. and Seissler, J., CD8+ CD122+ PD-1-effector cells promote the development of diabetes in NOD mice. J. Leukoc. Biol. 2015. 97: 111-120.

Wang, Y., Xie, Q., Liang, C.-L., Zeng, Q. and Dai, Z., Chinese medicine Ginseng and Astragalus granules ameliorate autoimmune diabetes by upregulating both CD4+FoxP3+ and CD8+CD122+PD1+ regulatory T cells. Oncotarget 2017. 8: 60201-60209.

Pellegrino, M., Crinò, A., Rosado, M. M. and Fierabracci, A., Identification and functional characterization of CD8+ T regulatory cells in type 1 diabetes patients. PLoS One 2019. 14: e0210839.

Iijima, T., Kato, K., Jojima, T., Tomotsune, T., Fukushima, M., Suzuki, K. and Aso, Y., Circulating CD4+ PD-1+ and CD8+ PD-1+ T cells are profoundly decreased at the onset of fulminant type 1 diabetes and are restored by treatment, contrasting with CD4+ CD25+ FoxP3+ regulatory T cells. Diabetes Res Clin Prac 2017. 133: 10-12.

Schwartz, R. H., Costimulation of lymphocytes-T - the role of Cd28, Ctla-4, and B7/Bb1 in interleukin-2 production and immunotherapy. Cell 1992. 71: 1065-1068.

Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A. and Bluestone, J. A., CD28 Costimulation: from mechanism to therapy. Immunity 2016. 44: 973-988.

Liu, Z., Specific suppression of T helper alloreactivity by allo-MHC class I-restricted CD8(+)CD28(-) T cells. Internatnl Immunol 1998. 10: 775-783.

Crespo, J., Sun, H., Welling, T. H., Tian, Z. and Zou, W., T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opinion Immunol 2013. 25: 214-221.

Huff, W X., Kwon, J. H., Henriquez, M., Fetcko, K. and Dey, M., The evolving role of CD8(+)CD28(-) immunosenescent T cells in cancer immunology. Int. J. Mol. Sci. 2019. 20: 2810.

Colovai, A. I., Mirza, M., Vlad, G., Wang, S. U, Ho, E., Cortesini, R. and Suciu-Foca, N., Regulatory CD8+CD28-T cells in heart transplant recipients. Hum. Immunol. 2003. 64: 31-37.

Filaci, G., Fravega, M., Negrini, S., Procopio, F., Fenoglio, D., Rizzi, M., Brenci, S. et al., Nonantigen specific CD8(+) T suppressor lymphocytes originate from CD8(+)CD28(-) T cells and inhibit both T-cell proliferation and CTL function. Hum. Immunol. 2004. 65: 142-156.

Filaci, G., Fenoglio, D., Fravega, M., Ansaldo, G., Borgonovo, G., Traverso, P., Villaggio, B. et al., CD8(+)CD28(-) T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J. Immunol. 2007. 179: 4323-4334.

Tulunay, A., Yavuz, S., Direskeneli, H. and Eksioglu-Demiralp, E., CD8(+)CD28(-), suppressive T cells in systemic lupus erythematosus. Lupus 2008. 17: 630-637.

Manavalan, J. S., Kim-Schulze, S., Scotto, L., Naiyer, A. J., Vlad, G., Colombo, P. C., Marboe, C. et al., Alloantigen specific CD8(+)CD28(-) FOXP3(+) T suppressor cells induce ILT3(+) ILT4(+) tolerogenic endothelial cells, inhibiting alloreactivity. Int. Immunol. 2004. 16: 1055-1068.

Scotto, L., Naiyer, A. J., Galluzzo, S., Rossi, P., Manavalan, J. S., Kim-Schulze, S., Fang, J. et al., Overlap between molecular markers expressed by naturally occurring CD4(+)CD(25+) regulatory T cells and antigen specific CD4+CD25+ and CD8+CD28- T suppressor cells. Hum. Immunol. 2004. 65: 1297-1306.

Li, G., Larregina, A. T., Domsic, R. T., Stolz, D. B., Medsger, T. A., Lafyatis, R. and Fuschiotti, P., Skin-resident effector memory CD8(+) CD28(-) T cells exhibit a profibrotic phenotype in patients with systemic sclerosis. J Investigat Dermatol 2017. 137: 1042-1050.

Weng, N. -P., Akbar, A. N. and Goronzy, J., CD28(-) T cells: their role in the age-associated decline of immune function. Trends Immunol. 2009. 30: 306-312.

Karagöz, B., Bilgi, O., Gümüs, M., Erikçi, A. A., Sayan, Ö., Türken, O., Kandemir, E. G. et al., CD8+CD28-cells and CD4+CD25+regulatory T cells in the peripheral blood of advanced stage lung cancer patients. Med. Oncol. 2010. 27: 29-33.

Meloni, F., Morosini, M., Solari, N., Passadore, I., Nascimbene, C., Novo, M., Ferrari, M. et al., Foxp3 expressing CD4(+) CD25(+) and CD8(+)CD28(-) T regulatory cells in the peripheral blood of patients with lung cancer and pleural mesothelioma. Hum. Immunol. 2006. 67: 1-12.

Sun, Z., Zhong, W., Lu, X., Shi, B., Zhu, Y., Chen, L., Zhang, G. et al., Association of Graves' disease and prevalence of circulating IFN-gamma-producing CD28(-) T cells. J. Clin. Immunol. 2008. 28: 464-472.

Schirmer, M., Goldberger, C., Würzner, R., Duftner, C., Pfeiffer, K.-P., Clausen, J., Neumayr, G. et al., Circulating cytotoxic CD8(+) CD28(-) T cells in ankylosing spondylitis. Arthritis Res. 2002. 4: 71-76.

Fenoglio, D., Dentone, C., Signori, A., Di Biagio, A., Parodi, A., Kalli, F., Nasi, G. et al., CD8(+)CD28(-)CD127(lo)CD39(+) regulatory T-cell expansion: a new possible pathogenic mechanism for HIV infection? J. Allergy Clin. Immunol. 2018. 141: 2220-2233.e4 e4.

Vivar, N., Thang, P. H., Atlas, A., Chiodi, F. and Rethi, B., Potential role of CD8+CD28- T lymphocytes in immune activation during HIV-1 infection. AIDS 2008. 22: 1083-1086.

Pandya, J. M., Venalis, P., Al-Khalili, L., Shahadat Hossain, M., Stache, V., Lundberg, I. E., Malmström, V. et al., CD4+and CD8+CD28(null) T cells are cytotoxic to autologous muscle cells in patients with polymyositis. Arth Rheumatol 2016. 68: 2016-2026.

Engela, A. U., Baan, C. C., Litjens, N. H. R., Franquesa, M., Betjes, M. G. H., Weimar, W. and Hoogduijn, M. J., Mesenchymal stem cells control alloreactive CD8(+)CD28(-) T cells. Clin Experiment Immunol 2013. 174: 449-458.

Mikulkova, Z., Praksova, P., Stourac, P., Bednarik, J., Strajtova, L., Pacasova, R., Belobradkova, J. et al., Numerical defects in CD8+CD28- T-suppressor lymphocyte population in patients with type 1 diabetes mellitus and multiple sclerosis. Cell. Immunol. 2010. 262: 75-79.

Tsukishiro, T., Donnenberg, A. D. and Whiteside, T L., Rapid turnover of the CD8(+)CD28(-) T-cell subset of effector cells in the circulation of patients with head and neck cancer. Cancer Immunol. Immunother. 2003. 52: 599-607.

Casado, J G., Soto, R., Delarosa, O., Peralbo, E., Muñoz-Villanueva, M. D. C., Rioja, L., Peña, J. et al., CD8 T cells expressing NK associated receptors are increased in melanoma patients and display an effector phenotype. Cancer Immunol. Immunother. 2005. 54: 1162-1171.

Geng, L., Liu, J., Huang, J., Lin, B., Yu, S., Shen, T., Wang, Z. et al., A high frequency of CD8(+)CD28(-) T-suppressor cells contributes to maintaining stable graft function and reducing immunosuppressant dosage after liver transplantation. Int. J. Med. Sci. 2018. 15: 892-899.

Zhang, Li, Bertucci, A. M., Ramsey-Goldman, R., Burt, R. K. and Datta, S. K., Regulatory T cell (Treg) subsets return in patients with refractory lupus following stem cell transplantation, and TGF-beta-producing CD8+ Treg cells are associated with immunological remission of lupus. J. Immunol. 2009. 183: 6346-6358.

Feng, Fu, Liu, Y., Liu, G., Zhu, P., Zhu, M., Zhang, H., Lu, X. et al., Human CD8(+)CD28(-) T suppressor cells expanded by IL-15 in vitro suppress in an allospecific and programmed cell death protein 1-dependent manner. Front. Immunol. 2018. 9: 1442.

Maybruck, B. T., Pfannenstiel, L. W., Diaz-Montero, M. and Gastman, B, R., Tumor-derived exosomes induce CD8(+) T cell suppressors. J. Immunother. Cancer 2017. 5: 65.

Pomie, C., Vicente, R., Vuddamalay, Y., Lundgren, B. A., Van Der Hoek, M., Enault, G., Kagan, J. et al., Autoimmune regulator (AIRE)-deficient CD8(+)CD28(low) regulatory T lymphocytes fail to control experimental colitis. Proc. Nat. Acad. Sci. U.S.A. 2011. 108: 12437-12442.

Vuddamalay, Y., Attia, M., Vicente, R., Pomié, C., Enault, G., Leobon, B., Joffre, O. et al., Mouse and human CD8(+) CD28(low) regulatory T lymphocytes differentiate in the thymus. Immunology 2016. 148: 187-196.

Ménager-Marcq, I., Pomié, C., Romagnoli, P. and Van Meerwijk, J. P. M., CD8(+)CD28(-) regulatory T lymphocytes prevent experimental inflammatory bowel disease in mice. Gastroenterology 2006. 131: 1775-1785.

Najafian, N., Chitnis, T., Salama, A. D., Zhu, B., Benou, C., Yuan, X., Clarkson, M. R. et al., Regulatory functions of CD8(+)CD28(-) T cells in an autoimmune disease model. J Clin Investigat 2003. 112: 1037-1048.

Mangalam, A K., Luckey, D., Giri, S., Smart, M., Pease, L. R., Rodriguez, M. and David, C. S., Two discreet subsets of CD8 T cells modulate PLP91-110 induced experimental autoimmune encephalomyelitis in HLA-DR3 transgenic mice. J Autoimmunity 2012. 38: 344-353.

Strioga, M., Pasukoniene, V. and Characiejus, D., CD8+ CD28- and CD8+ CD57+ T cells and their role in health and disease. Immunology 2011. 134: 17-32.

Hermiston, M L., Xu, Z. and Weiss, A., CD45: a critical regulator of signaling thresholds in immune cells. Ann Rev Immunol 2003. 21: 107-137.

Courtney, A. H., Shvets, A. A., Lu, W., Griffante, G., Mollenauer, M., Horkova, V., Lo, W. et al., CD45 functions as a signaling gatekeeper in T cells. Sci. Signal 2019. 12: eaaw8151.

Xystrakis, E., Cavailles, P., Dejean, A S., Cautain, B., Colacios, C., Lagrange, D., Van De Gaar, M.-J. et al., Functional and genetic analysis of two CD8 T cell subsets defined by the level of CD45RC expression in the rat. J. Immunol. 2004. 173: 3140-3147.

Xystrakis, E., Dejean, A S., Bernard, I., Druet, P., Liblau, R., Gonzalez-Dunia, D. and Saoudi, A., Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood 2004. 104: 3294-3301.

Han, G., Shao, H., Peng, Y., Zhang, P., Ke, Y., Kaplan, H J. and Sun, D., Suppressor role of rat CD8(+)CD45RC(low) T cells in experimental autoimmune uveitis (EAU). J. Neuroimmunol. 2007. 183: 81-88.

Picarda, E., Bézie, S., Boucault, L., Autrusseau, E., Kilens, S., Meistermann, D., Martinet, B. et al., Transient antibody targeting of CD45RC induces transplant tolerance and potent antigen-specific regulatory T cells. Jci Insight 2017. 2: 20.

Ordonez, L., Bernard, I., Chabod, M., Augusto, J. F., Lauwers-Cances, V., Cristini, C., Cuturi, M. C. et al., A higher risk of acute rejection of human kidney allografts can be predicted from the level of CD45RC expressed by the recipients' CD8 T cells. PLoS One 2013.8: e69791.

Ordonez, L., Bernard, I., L'faqihi-Olive, F. -E., Tervaert, J. W. C., Damoiseaux, J. and Saoudi, A., CD45RC isoform expression identifies functionally distinct T cell subsets differentially distributed between healthy individuals and AAV patients. PLoS One 2009. 4: e5287.

Bézie, S., Meistermann, D., Boucault, L., Kilens, S., Zoppi, J., Autrusseau, E., Donnart, A. et al., Ex vivo expanded human non-cytotoxic CD8(+)CD45RC(low/-) Tregs efficiently delay skin graft rejection and GVHD in humanized mice. Front. Immunol. 2017. 8: 2014.

Lemerle, M., Garnier, A.-S., Planchais, M., Brilland, B., Subra, Y., Blanchet, J. -F., Blanchard, O. et al., CD45RC expression of circulating CD8(+) T cells predicts acute allograft rejection: a cohort study of 128 kidney transplant patients. J. Clin. Med. 2019. 8: 1147.

Garnier, A.-S., Planchais, M., Riou, J., Jacquemin, C., Ordonez, L., Saint-André, J.-P., Croue, A. et al., Pre-transplant CD45RC expression on blood T cells differentiates patients with cancer and rejection after kidney transplantation. PLoS One 2019. 14: e0214321.

Ouisse, L. H., Remy, S., Lafoux, A., Larcher, T., Tesson, L., Chenouard, V., Guillonneau, C. et al., Immunophenotype of a rat model of Duchenne's disease and demonstration of improved muscle strength after anti-CD45RC antibody treatment. Front. Immunol. 2019. 10: 2131.

Guillonneau, C., Hill, M., Hubert, F.-X., Chiffoleau, E., Hervé, C., Li, X. -L., Heslan, M. et al., CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase. J. Clin. Invest. 2007. 117: 1096-1106.

Bézie, S., Picarda, E., Ossart, J., Tesson, L., Usal, C., Renaudin, K., Anegon, I. et al., IL-34 is a Treg-specific cytokine and mediates transplant tolerance. J Clin Investigat 2015. 125: 3952-3964.

Li, X. L., Ménoret, S., Bezie, S., Caron, L., Chabannes, D., Hill, M., Halary, F. et al., Mechanism and localization of CD8 regulatory T cells in a heart transplant model of tolerance. J. Immunol. 2010. 185: 823-833.

Rogers, N. M., Isenberg, J. S. and Thomson, A. W., Plasmacytoid dendritic cells: no longer an enigma and now key to transplant tolerance? Am. J. Transplant. 2013. 13: 1125-1133.

Cheroutre, H., Lambolez, F. and Mucida, D., The light and dark sides of intestinal intraepithelial lymphocytes. Nat. Rev. Immunol. 2011. 11: 445-456.

Tang, X., Maricic, I., Purohit, N., Bakamjian, B., Reed-Loisel, L M., Beeston, T., Jensen, P. et al., Regulation of immunlity by a novel population of Qa-1-restricted CD8 alpha alpha+TCR alpha beta(+) T cells. J. Immunol. 2006. 177: 7645-7655.

Sheng, H., Marrero, I., Maricic, I., Fanchiang, S. S., Zhang, S., Sant'angelo, D. B. and Kumar, V., Distinct PLZF(+)CD8alphaalpha(+) unconventional T cells enriched in liver use a cytotoxic mechanism to limit autoimmunity. J. Immunol. 2019. 203: 2150-2162.

Park, J. E., Botting, R. A., Domínguez Conde, C., Popescu, D. M., Lavaert, M., Kunz, D. J., Goh, I. et al., A cell atlas of human thymic development defines T cell repertoire formation. Science 2020. 367: eaay3224.

Mondoon, S., Shibata, K. and Yoshikai, Y., In vivo blockade of T cell development reveals alternative pathways for generation of intraepithelial lymphocytes in mice. Immunol. Lett. 2017. 191: 40-46.

Sujino, T., London, M., Hoytema Van Konijnenburg, D. P., Rendon, T., Buch, T., Silva, H. M., Lafaille, J. J. et al., Tissue adaptation of regulatory and intraepithelial CD4(+) T cells controls gut inflammation. Science 2016. 352: 1581-1586.

Ruscher, R., Kummer, R. L., Lee, Y. J., Jameson, S. C. and Hogquist, K. A., CD8 alpha alpha intraepithelial lymphocytes arise from two main thymic precursors. Nat. Immunol. 2017. 18: 771.

Owen, D. L., Mahmud, S. A., Sjaastad, L. E., Williams, J. B., Spanier, J. A., Simeonov, D. R., Ruscher, R. et al., Thymic regulatory T cells arise via two distinct developmental programs. Nat. Immunol. 2019. 20: 195-205.

Nambu, Y., Hayashi, T., Jang, K.- J., Aoki, K., Mano, H., Nakano, K., Osato, M. et al., In situ differentiation of CD8 alpha alpha T cells from CD4 T cells in peripheral lymphoid tissues. Sci. Rep. 2012. 2: 11.

Poussier, P., Ning, T., Banerjee, D. and Julius, M., A unique subset of self-specific intraintestinal T cells maintains gut integrity. J. Experiment Med. 2002. 195: 1491-1497.

Ostanin, D. V., Brown, C. M., Gray, L., Bharwani, S. and Grisham, M. B., Evaluation of the immunoregulatory activity of intraepithelial lymphocytes in a mouse model of chronic intestinal inflammation. Int. Immunol. 2010. 22: 927-939.

Cervantes-Barragan, L., Chai, J. N., Tianero, Ma. D, Di Luccia, B., Ahern, P. P., Merriman, J., Cortez, V. S. et al., Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha(+) T cells. Science 2017. 357: 806-810.

Reis, B. S., Rogoz, A., Costa-Pinto, F. A., Taniuchi, I. and Mucida, D., Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4(+) T cell immunity. Nat. Immunol. 2013. 14: 271-280.

Mucida, D., Husain, M. M., Muroi, S., Van Wijk, F., Shinnakasu, R., Naoe, Y., Reis, B. S. et al., Transcriptional reprogramming of mature CD4(+) helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 2013. 14: 281-289.

Das, G., Augustine, M. M., Das, J., Bottomly, K., Ray, P. and Ray, A., An important regulatory role for CD4+CD8 alpha alpha T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. Proc Natl Acad Sci USA 2003. 100: 5324-5329.

Steenholt, J. V., Nielsen, C., Baudewijn, L., Staal, A., Rasmussen, K. S., Sabir, H. J., Barington, T. et al., The composition of T cell subtypes in duodenal biopsies are altered in coeliac disease patients. PLoS One 2017. 12: e0170270.

Carton, J., Byrne, B., Madrigal-Estebas, L., O'donoghue, D. P. and O'farrelly, C., CD4+CD8+ human small intestinal T cells are decreased in coeliac patients, with CD8 expression downregulated on intra-epithelial T cells in the active disease. Eur. J. Gastroenterol. Hepatol. 2004. 16: 961-968.

Tang, X., Maricic, I. and Kumar, V., Anti-TCR antibody treatment activates a novel population of nonintestinal CD8 alpha alpha+TCR alpha beta(+) regulatory T cells and prevents experimental autoimmune encephalomyelitis. J. Immunol. 2007. 178: 6043-6050.

Nakagawa, H., Wang, L., Cantor, H. and Kim, H. J., New insights into the biology of CD8 regulatory T cells. Adv. Immunol. 2018. 140: 1-20.

Kim, H.-J., Verbinnen, B., Tang, X., Lu, L. and Cantor, H., Inhibition of follicular T-helper cells by CD8(+) regulatory T cells is essential for self- tolerance. Nature 2010. 467: 328-332.

Van Montfoort, N., Borst, L., Korrer, M. J., Sluijter, M., Marijt, K. A., Santegoets, S. J., Van Ham, V. J. et al., NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 2018. 175: 1744-1755.

Bian, Y., Shang, S., Siddiqui, S., Zhao, J., Joosten, S. A., Ottenhoff, T. H. M., Cantor, H. et al., MHC Ib molecule Qa-1 presents Mycobacterium tuberculosis peptide antigens to CD8+ T cells and contributes to protection against infection. PLoS Pathog. 2017. 13: e1006384.

Varthaman, A., Khallou-Laschet, J., Clement, M., Fornasa, G., Kim, H. -. J., Gaston, A. - T., Dussiot, M. et al., Control of T cell reactivation by regulatory Qa-1-restricted CD8(+) T cells. J. Immunol. 2010. 184: 6585-6591.

Stocks, B. T., Wilson, C. S., Marshall, A. F., Brewer, L. A. and Moore, D. J., Host expression of the CD8 Treg/NK cell restriction element Qa-1 is dispensable for transplant tolerance. Sci. Rep. 2017. 7: 11181.

Hu, D., Ikizawa, K., Lu, L., Sanchirico, M. E., Shinohara, M. L. and Cantor, H., Analysis of regulatory CD8 T cells in Qa-1-deficient mice. Nat. Immunol. 2004. 5: 516-523.

Lu, L., Kim, H.-J., Werneck, M. B. F. and Cantor, H., Regulation of CD8+ regulatory T cells: Interruption of the NKG2A-Qa-1 interaction allows robust suppressive activity and resolution of autoimmune disease. Proc. Natl. Acad. Sci. USA 2008. 105: 19420-19425.

Choi, J Y., Eskandari, S K., Cai, S., Sulkaj, I., Assaker, J. P., Allos, H., Alhaddad, J. et al., Regulatory CD8 T cells that recognize Qa-1 expressed by CD4 T-helper cells inhibit rejection of heart allografts. Proc. Natl Acad. Sci. USA 2020. 117: 6042-6046.

Anderson, C. K., Reilly, E. C., Lee, A. Y. and Brossay, L., Qa-1-restricted CD8(+) T cells can compensate for the absence of conventional T cells during viral infection. Cell Rep. 2019. 27: 537.

Goodall, K. J., Nguyen, A., Mckenzie, C., Eckle, S. B. G., Sullivan, L. C. and Andrews, D. M., The murine CD94/NKG2 ligand, Qa-1(b), is a high-affinity, functional ligand for the CD8alpha-alpha homodimer. J. Biol. Chem. 2020. 295: 3239-3246.

Beeston, T., Smith, T R.F., Maricic, I., Tang, X. and Kumar, V., Involvement of IFN-gamma and perforin, but not Fas/FasL interactions in regulatory T cell-mediated suppression of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2010. 229: 91-97.

Jiang, H., Canfield, S. M., Gallagher, M. P., Jiang, H. H., Jiang, Y., Zheng, Z. and Chess, L., HLA-E-restricted regulatory CD8(+) T cells are involved in development and control of human autoimmune type 1 diabetes. J. Clin. Invest. 2010. 120: 3641-3650.

Jørgensen, P. B., Livbjerg, A. H., Hansen, H. J., Petersen, T. and Höllsberg, P., Epstein-Barr virus peptide presented by HLA-E is predominantly recognized by CD8(bright) cells in multiple sclerosis patients. PLoS One 2012. 7: e46120.

Correale, J. and Villa, A., Isolation and characterization of CD8+ regulatory T cells in multiple sclerosis. J. Neuroimmunol. 2008. 195: 121-134.

Essawy, B El, Putheti, P., Gao, W. and Strom, T.B., Rapamycin generates graft-homing murine suppressor CD8(+) T cells that confer donor-specific graft protection. Cell Transplant. 2011. 20: 1759-1769.

Notley, C. A., Mccann, F. E., Inglis, J. J. and Williams, R. O., ANTI-CD3 therapy expands the numbers of CD4+ and CD8+ Treg cells and induces sustained amelioration of collagen-induced arthritis. Arthr Rheum 2010. 62: 171-178.

Endharti, A. T., Rifa’, M., Shi, Z., Fukuoka, Y., Nakahara, Y., Kawamoto, Y., Takeda, K. et al., Cutting edge: CD8(+)CD122(+) regulatory T cells produce IL-10 to suppress IFN-gamma production and proliferation of CD8(+) T cells. J. Immunol. 2005. 175: 7093-7097.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...