• This record comes from PubMed

Parameters Identification of the Anand Material Model for 3D Printed Structures

. 2021 Jan 27 ; 14 (3) : . [epub] 20210127

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Currently, there is an increasing use of machine parts manufactured using 3D printing technology. For the numerical prediction of the behavior of such printed parts, it is necessary to choose a suitable material model and the corresponding material parameters. This paper focuses on the determination of material parameters of the Anand material model for acrylonitrile butadiene styrene (ABS-M30) material. Material parameters were determined using the genetic algorithm (GA) method using finite element method (FEM) calculations. The FEM simulations were subsequently adjusted to experimental tests carried out to achieve the possible best agreement. Several experimental tensile and indentation tests were performed. The tests were set up in such a way that the relaxation and creep behaviors were at least partially captured. Experimental tests were performed at temperatures of 23 °C, 44 °C, 60 °C, and 80 °C. The results obtained suggest that the Anand material model can also be used for ABS-M30 plastic material, but only if the goal is not to detect anisotropic behavior. Future work will focus on the search for a suitable material model that would be able to capture the anisotropic behavior of printed plastic materials.

See more in PubMed

Fusek M., Paška Z., Rojíček J. Identification of material parameters and material model for 3D printing structure; Proceedings of the 58th International Scientific conference on Experimental Stress Analysis 2020; VSB-Technical University of Ostrava, Ostrava, Czech Republic. 19–22 October 2020; p. 106.

Paska Z., Rojicek J. Methodology of arm design for mobile robot manipulator using topological optimization. MM Sci. J. 2020;2020:3918–3925. doi: 10.17973/MMSJ.2020_06_2020008. DOI

Yao P., Zhou K., Lin Y., Tang Y. Light-Weight Topological Optimization for Upper Arm of an Industrial Welding Robot. Metals. 2019;9:1020. doi: 10.3390/met9091020. ISSN 2075-4701. DOI

Andreasen C.S., Elingaard M.O., Aage N. Level set topology and shape optimization by density methods using cut elements with length scale control. Struct. Multidiscip. Optim. 2020;62:685–707. doi: 10.1007/s00158-020-02527-1. ISSN 1615-147X. DOI

Xie Y.M., Steven G.P. A simple evolutionary procedure for structural optimization. Comput. Struct. 1993;49:885–896. doi: 10.1016/0045-7949(93)90035-C. DOI

Fortus 380mc and Fortus 450mc. [(accessed on 28 February 2020)]; Available online: https://www.stratasys.com/3d-printers/fortus-380mc-450mc.

Dizon J.R.C., Espera A.H., Chen Q., Advincula R.C. Mechanical characterization of 3D-printed polymers. Addit. Manuf. 2018;20:44–67. doi: 10.1016/j.addma.2017.12.002. DOI

Hund J., Naumann J., Seelig T. An experimental and constitutive modeling study on the large strain deformation and fracture behavior of PC/ABS blends. Mech. Mater. 2018;124:132–142. doi: 10.1016/j.mechmat.2018.06.003. ISSN 01676636. DOI

Manaia J.P., Pires F.A., de Jesus A.M.P., Wu S. Mechanical response of three semi crystalline polymers under different stress states. Polym. Test. 2020;81:132–142. doi: 10.1016/j.polymertesting.2019.106156. ISSN 01429418. DOI

Louche H., Piette-Coudol F., Arrieux R., Issartel J. An experimental and modeling study of the thermomechanical behavior of an ABS polymer structural component during an impact test. Int. J. Impact Eng. 2009;36:847–861. doi: 10.1016/j.ijimpeng.2008.09.007. ISSN 0734743X. DOI

Duan Y., Saigal A., Greif R., Zimmerman M.A. A uniform phenomenological constitutive model for glassy and semicrystalline polymers. Int. J. Impact Eng. 2001;41:1322–1328. doi: 10.1002/pen.10832. ISSN 0032-3888. DOI

Anand L. Constitutive Equations for Hot-Working of Metals. Int. J. Plast. 1985;1:213–231. doi: 10.1016/0749-6419(85)90004-X. DOI

Brown S., Kim K., Anand L. An internal variable constitutive model for hot working of metals. Int. J. Plast. 1989;5:95–130. doi: 10.1016/0749-6419(89)90025-9. ISSN 07496419. DOI

Ansys Southpointe (USA) [(accessed on 30 November 2020)];2020 Available online: https://www.ansys.com/

Python Beaverton (USA) [(accessed on 30 November 2020)];2020 Available online: https://www.python.org/

Papazafeiropoulos G., Muñiz-Calvente M., Martínez-Pañeda E., Zimmerman M.A. Abaqus2Matlab: A suitable tool for finite element post-processing. Adv. Eng. Softw. 2017;105:9–16. doi: 10.1016/j.advengsoft.2017.01.006. ISSN 09659978. DOI

Rahmani B., Mortazavi F., Villemure I., Levesque M. A new approach to inverse identification of mechanical properties of composite materials: Regularized model updating. Compos. Struct. 2013;105:116–125. doi: 10.1016/j.compstruct.2013.04.025. ISSN 02638223. DOI

Waszczyszyn Z., Ziemiański L. Neural networks in mechanics of structures and materials–new results and prospects of applications. Comput. Struct. 2001;79:2261–2276. doi: 10.1016/S0045-7949(01)00083-9. ISSN 00457949. DOI

Andrade-Campos A., Thuillier S., Pilvin P., Teixeira-Dias F. On the determination of material parameters for internal variable thermoelastic–viscoplastic constitutive models. Int. J. Plast. 2007;23:1349–1379. doi: 10.1016/j.ijplas.2006.09.002. ISSN 07496419. DOI

Van Griensven A., Meixner T., Grunwald S., Bishop T., Diluzio M., Srinivasan R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. J. Hydrol. 2006;324:10–23. doi: 10.1016/j.jhydrol.2005.09.008. ISSN 00221694. DOI

Cheng Z., Wang G., Chen L., Wilde J., Becker K. Viscoplastic Anand model for solder alloys and its application. Solder. Surf. Mt. Technol. 2000;12:31–36. doi: 10.1108/09540910010331428. DOI

Motalab M., Cai Z., Suhling J.C., Lall P. Determination of Anand constants for SAC solders using stress-strain or creep data; Proceedings of the 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems; San Diego, CA, USA. 30 May–1 June 2012; New York, NY, USA: IEEE; 2012.

Rojíček J. Identification of material parameters by FEM. Mod. Mach. Sci. J. 2010;2:185–188.

Dusunceli N., Colak O.U. Determination of material parameters of a viscoplastic model by genetic algorithm. Mater. Des. 2010;31:1250–1255. doi: 10.1016/j.matdes.2009.09.023. DOI

Vose M.D. The Simple Genetic Algorithm: Foundations and Theory. Mit Press; Cambridge, MA, USA: 1999.

Simon D. Evolutionary Optimization Algorithms: Biologically-Inspired and Population-Based Approaches to Computer Intelligence. 1st ed. John Wiley & Sons; Hoboken: Hoboken, NJ, USA: 2013.

Schreier H., Orteu J.J., Sutton M.A. Image Correlation for Shape, Motion and Deformation Measurements. Springer; Boston, MA, USA: 2009. DOI

Hartmann S., Gibmeier J., Scholtes B. Experiments and Material Parameter Identification Using Finite Elements. Uniaxial Tests and Validation Using Instrumented Indentation Tests. Exp. Mech. 2006;46:5–18. doi: 10.1007/s11340-006-5857-2. ISSN 0014-4851. DOI

Newest 20 citations...

See more in
Medvik | PubMed

Structural identifiability of parameters of Anand material model

. 2025 Feb 15 ; 15 (1) : 5663. [epub] 20250215

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...