Structural identifiability of parameters of Anand material model
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-05338S
Czech Science Foundation project
23-05338S
Czech Science Foundation project
PubMed
39955328
PubMed Central
PMC11830087
DOI
10.1038/s41598-025-89360-y
PII: 10.1038/s41598-025-89360-y
Knihovny.cz E-zdroje
- Klíčová slova
- Anand material model, Calibration, Finite element method updating, Tension test, Validation,
- Publikační typ
- časopisecké články MeSH
This article explores the structural identifiability of parameters within non-linear physical models, focussing specifically on the Anand material model. The proposed procedure is structured in two key steps: first, a local analysis identifies the most suitable parameters for testing. Subsequently, these selected parameters, along with their admissible value intervals, are evaluated for global structural dependence. Our innovative numerical approach systematically reduces the parameter count by substituting selected parameters with frozen values (constants). The study employs simulations of the finite element method of a simplified tensile test, utilising the Anand material model. The independent parameters identified through this method are then validated against a tensile test dataset. The validation results indicate a high probability that the use of a reduced parameter set yields unique values for the Anand model parameters in the tensile tests, underscoring the efficacy of our approach.
Zobrazit více v PubMed
Bellman, R. & Åström, K. J. On structural identifiability. Math. Biosci.7(3–4), 329–339 (1970).
Walter, E., Pronzato, L. & Norton, J. Identification of Parametric Models from Experimental Data Vol. 1, 413 (Springer, Heidelberg, Germany, 1997).
Chis, O.-T., Banga, J. R. & Balsa-Canto, E. Structural identifiability of systems biology models: A critical comparison of methods. PLoS ONE6(11), 27755 (2011). PubMed PMC
Lam, N. N., Docherty, P. D. & Murray, R. Practical identifiability of parametrised models: A review of benefits and limitations of various approaches. Math. Comput. Simul.199, 202–216. 10.1016/j.matcom.2022.03.020 (2022).
Grama, S., Subramanian, S. & Pierron, F. On the identifiability of anand visco-plastic model parameters using the virtual fields method. Acta Mater.86, 118–136 (2015).
Zhang, Y., Van Bael, A., Andrade-Campos, A. & Coppieters, S. Parameter identifiability analysis: Mitigating the non-uniqueness issue in the inverse identification of an anisotropic yield function. Int. J. Solids Struct.243, 111543 (2022).
Guillaume, J. H. et al. Introductory overview of identifiability analysis: A guide to evaluating whether you have the right type of data for your modeling purpose. Environ. Model. Softw.119, 418–432 (2019).
Anand, L. Constitutive equations for hot-working of metals. Int. J. Plast.1(3), 213–231 (1985).
Brown, S. B., Kim, K. H. & Anand, L. An internal variable constitutive model for hot working of metals. Int. J. Plast.5(2), 95–130 (1989).
Motalab, M., Cai, Z., Suhling, J.C. & Lall, P. Determination of anand constants for sac solders using stress-strain or creep data. in 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, pp. 910–922 (2012). IEEE.
Herkommer, D., Punch, J. & Reid, M. Constitutive modeling of joint-scale sac305 solder shear samples. IEEE Trans. Compon. Packag. Manuf. Technol.3(2), 275–281 (2012).
Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math.11(2), 431–441 (1963).
Mohammad, H., Waziri, M. Y. & Santos, S. A. A brief survey of methods for solving nonlinear least-squares problems. Numer. Algebra Control Optim.9(1), 1–13 (2019).
Fraley, C. Algorithms for Nonlinear Least-squares Problems. Stanford University, Department of Operations Research, Systems Optimization ..., ??? (1988).
Zhang, Z., Chen, Z., Liu, S. & Dong, F. Parameter identification of anand constitutive models for sac305 using the intelligent optimization algorithm. in 2019 IEEE 21st Electronics Packaging Technology Conference (EPTC), pp. 133–137 (2019). IEEE.
Yuan, C., Su, Q. & Chiang, K.-N. Coefficient extraction of sac305 solder constitutive equations using equation-informed neural networks. Materials16(14), 4922 (2023). PubMed PMC
Rojícek, J., Paška, Z., Fusek, M., Fojtík, F. & Ličková, D. A study on femu: Influence of selection of experiments on results for abs-m30 material. Mod. Mach. Sci. J., 5426–5434 (2021).
Schmaltz, S. & Willner, K. Identification of material behavior via a finite element model updating strategy. PAMM14(1), 439–440 (2014).
Petureau, L., Doumalin, P. & Bremand, F. Identification of local elastic parameters in heterogeneous materials using a parallelized FEMU method. Int. J. Appl. Mech. Eng.24(4), 140–156 (2019).
Tho, K., Swaddiwudhipong, S., Liu, Z. & Zeng, K. Simulation of instrumented indentation and material characterization. Mater. Sci. Eng. A390(1–2), 202–209 (2005).
Bucaille, J.-L., Stauss, S., Felder, E. & Michler, J. Determination of plastic properties of metals by instrumented indentation using different sharp indenters. Acta Mater.51(6), 1663–1678 (2003).
Luo, J. & Lin, J. A study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters. Int. J. Solids Struct.44(18–19), 5803–5817 (2007).
Pöhl, F. Determination of unique plastic properties from sharp indentation. Int. J. Solids Struct.171, 174–180 (2019).
Chen, X., Ogasawara, N., Zhao, M. & Chiba, N. On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials. J. Mech. Phys. Solids55(8), 1618–1660 (2007).
Zhang, Z., Chen, Z., Liu, S., Dong, F., Liang, K., & Ma, K. The comparison of qian-liu model and anand model for uniaxial tensile test of sac305. in 2019 20th International Conference on Electronic Packaging Technology (ICEPT), pp. 1–5 (2019). IEEE.
Haq, M.A., Hoque, M.A., Suhling, J.C. & Lall, P. Determination of anand parameters from creep testing of sac305 solder joints. in International Electronic Packaging Technical Conference and Exhibition, vol. 84041, pp. 001–01016 (2020). American Society of Mechanical Engineers.
Leslie, D., Dasgupta, A. & Morillo, C. Viscoplastic properties of pressure-less sintered silver materials using indentation. Microelectron. Reliab.74, 121–130 (2017).
Chen, G. et al. Applying viscoplastic constitutive models to predict ratcheting behavior of sintered nanosilver lap-shear joint. Mech. Mater.72, 61–71 (2014).
Chen, G., Zhao, X. & Wu, H. A critical review of constitutive models for solders in electronic packaging. Adv. Mech. Eng.9(8), 1687814017714976 (2017).
Jones, E. et al. Parameter covariance and non-uniqueness in material model calibration using the virtual fields method. Comput. Mater. Sci.152, 268–290 (2018).
Wieland, F.-G., Hauber, A. L., Rosenblatt, M., Tönsing, C. & Timmer, J. On structural and practical identifiability. Curr. Opin. Syst. Biol.25, 60–69 (2021).
Rojíček, J., Čermák, M., Halama, R., Paška, Z. & Vaško, M. Material model identification from set of experiments and validation by DIC. Math. Comput. Simul.189, 339–367 (2021).
Lall, P., Zhang, D., Yadav, V., Suhling, J. & Shantaram, S. Material behavior of sac305 under high strain rate at high temperature. in Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 1261–1269 (2014). IEEE.
Hassan, K.R., Alam, M.S., Suhling, J.C. & Lall, P. The poisson’s ratio of lead free solder-the often forgotten but important material property. in 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), pp. 1958–1969 (2019). IEEE.
Chen, X., Chen, G., & Sakane, M. Modified anand constitutive model for lead-free solder sn-3.5 ag. in The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No. 04CH37543), vol. 2, pp. 447–452 (2004). IEEE.
Long, X., Chen, Z., Wang, W., Fu, Y. & Wu, Y. Parameterized Anand constitutive model under a wide range of temperature and strain rate: Experimental and theoretical studies. J. Mater. Sci.55, 10811–10823 (2020).
Bai, N., Chen, X. & Gao, H. Simulation of uniaxial tensile properties for lead-free solders with modified Anand model. Mater. Des.30(1), 122–128 (2009).
Pei, M. & Qu, J. Constitutive modeling of lead-free solders. Int. Electron. Packag. Tech. Conf. Exhib.42002, 1307–1311 (2005).
Gao, F. & Han, L. Implementing the nelder-mead simplex algorithm with adaptive parameters. Comput. Optim. Appl.51(1), 259–277 (2012).
Fusek, M., Paška, Z., Rojíček, J. & Fojtík, F. Parameters identification of the Anand material model for 3d printed structures. Materials14(3), 587 (2021). PubMed PMC
Paska, Z., Halama, R., Dymacek, P., Govindaraj, B. & Rojicek, J. Comparison of tensile and creep properties of sac305 and sacx0807 at room temperature with DIC application. Appl. Sci.[SPACE]10.3390/app14020604 (2024).
Lall, P., Zhang, D., Yadav, V., Suhling, J. & Shantaram, S. Material behavior of sac305 under high strain rate at high temperature. In Fourteenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), pp. 1261–1269 (2014). IEEE.
Zhou, P., Hu, B.-T., Zhou, J.-M. & Yang, Y. Parameter fitting of constitutive model and fem analysis of solder joint thermal cycle reliability for lead-free solder sn-3.5 ag. J. Cent. South Univ. Technol.16(3), 339–343 (2009).
Kassner, M., Smith, K. & Campbell, C. Low-temperature creep in pure metals and alloys. J. Mater. Sci.50, 6539–6551 (2015).
Lemaitre, J. & Chaboche, J.-L. Mechanics of Solid Materials (Cambridge University Press, Cambridge, 1994).