The Photostability of Novel Boron Hydride Blue Emitters in Solution and Polystyrene Matrix
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-23513S
Grantová Agentura České Republiky
CZ.1.05/2.1.00/19.0409
European Regional Development Fund
PubMed
33513832
PubMed Central
PMC7865770
DOI
10.3390/ma14030589
PII: ma14030589
Knihovny.cz E-resources
- Keywords
- OLED, anti-B18H22, boronhydride emitters, photostability,
- Publication type
- Journal Article MeSH
In recent work, the boron hydride anti-B18H22 was announced in the literature as a new laser dye, and, along with several of its derivatives, its solutions are capable of delivering blue luminescence with quantum yields of unity. However, as a dopant in solid polymer films, its luminescent efficiencies reduce dramatically. Clarification of underlying detrimental effects is crucial for any application and, thus, this contribution makes the initial steps in the use of these inorganic compounds in electrooptical devices based on organic polymer thin films. The photoluminescence behavior of the highly luminescent boron hydrides, anti-B18H22 and 3,3',4,4'-Et4-anti-B18H18, were therefore investigated. The quantum yields of luminescence and photostabilities of both compounds were studied in different solvents and as polymer-solvent blends. The photophysical properties of both boranes are evaluated and discussed in terms of their solvent-solute interactions using photoluminescence (PL) and NMR spectroscopies. The UV degradability of prepared thin films was studied by fluorimetric measurement. The effect of the surrounding atmosphere, dopant concentration and the molecular structure were assessed.
See more in PubMed
Goushi K., Yoshida K., Sato K., Adachi C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photonics. 2012;6:253–258. doi: 10.1038/nphoton.2012.31. DOI
Lee J.-H., Chen C.-H., Lee P.-H., Lin H.-Y., Leung M.-K., Chiu T.-L., Lin C.-F. Blue organic light-emitting diodes: Current status, challenges, and future outlook. J. Mater. Chem. C. 2019;7:5874–5888. doi: 10.1039/C9TC00204A. DOI
Li W., Pan Y., Xiao R., Peng Q., Zhang S., Ma D., Li F., Shen F., Wang Y., Yang B., et al. Employing ∼100% Excitons in OLEDs by Utilizing a Fluorescent Molecule with Hybridized Local and Charge-Transfer Excited State. Adv. Funct. Mater. 2014;24:1609–1614. doi: 10.1002/adfm.201301750. DOI
Yang Z., Gao M., Wu W., Yang X., Sun X.W., Zhang J., Wang H.-C., Liu R.-S., Han C.-Y., Yang H., et al. Recent advances in quantum dot-based light-emitting devices: Challenges and possible solutions. Mater. Today. 2019;24:69–93. doi: 10.1016/j.mattod.2018.09.002. DOI
Giovanella U., Pasini M., Botta C. Organic Light-Emitting Diodes (OLEDs): Working Principles and Device Technology. Springer International Publishing; Cham, Switzerland: 2016.
Anikeeva P.O., Madigan C.F., Halpert J.E., Bawendi M., Bulović V. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots. Phys. Rev. B. 2008;78:1–8. doi: 10.1103/PhysRevB.78.085434. DOI
Yang X., Zhou G., Wong W.-Y. ChemInform Abstract: Functionalization of Phosphorescent Emitters and Their Host Materials by Main-Group Elements for Phosphorescent Organic Light-Emitting Devices. Chem. Soc. Rev. 2016;47:8484–8575. doi: 10.1002/chin.201601237. PubMed DOI
Ho C.-L., Li H., Wong W.-Y. Red to near-infrared organometallic phosphorescent dyes for OLED applications. J. Organomet. Chem. 2014;751:261–285. doi: 10.1016/j.jorganchem.2013.09.035. DOI
Jamatia T., Škoda D., Urbanek P., Sevcik J., Maslik J., Munster L., Kalina L., Kuřitka I. Microwave-assisted synthesis of FexZn1−xO nanoparticles for use in MEH-PPV nanocomposites and their application in polymer light-emitting diodes. J. Mater. Sci. Mater. Electron. 2019;30:11269–11281. doi: 10.1007/s10854-019-01473-z. DOI
Škoda D., Urbanek P., Sevcik J., Munster L., Nádaždy V., Cullen D.A., Bazant P., Antos J., Kuritka I. Colloidal cobalt-doped ZnO nanoparticles by microwave-assisted synthesis and their utilization in thin composite layers with MEH-PPV as an electroluminescent material for polymer light emitting diodes. Org. Electron. 2018;59:337–348. doi: 10.1016/j.orgel.2018.05.037. DOI
Škoda D., Urbánek P., Sevcik J., Munster L., Antos J., Kuřitka I. Microwave-assisted synthesis of colloidal ZnO nanocrystals and their utilization in improving polymer light emitting diodes efficiency. Mater. Sci. Eng. B. 2018;2018:22–32. doi: 10.1016/j.mseb.2018.10.013. DOI
Lee H., Maeng M.-J., Hong J.-A., Najnin R., Moon J., Cho H., Lee J., Yu B.-G., Park Y., Cho N.S. Highly efficient green, blue, and white phosphorescent inverted organic light-emitting diodes by improving charge injection and balance. J. Mater. Chem. C. 2017;5:9911–9919. doi: 10.1039/C7TC02795H. DOI
Londesborough M.G.S., Hnyk D., Bould J., Serrano-Andrés L., Sauri V., Oliva-Enrich J.M., Kubát P., Polívka T., Lang K. Distinct Photophysics of the Isomers of B18H22 Explained. Inorg. Chem. 2012;51:1471–1479. doi: 10.1021/ic201726k. PubMed DOI
Cooke P.A., O’Dowd C., Londesborough M.G.S., Holub J., Štíbr B., Thornton-Pett M., Clegg W., Teat S.J., Kennedy J.D. B-frame supported bimetallics. “Composite cluster” compounds and the structures of [2,7-(η5-C5Me5)2-nido-2,7,8,6-Ir2CSB6H8] and its 9-chloro derivative. Synchrotron and conventional X-ray studies. J. Organomet. Chem. 2000;614–615:57–60. doi: 10.1016/S0022-328X(00)00592-1. DOI
Saurí V., Oliva J.M., Hnyk D., Bould J., Braborec J., Merchán M., Kubát P., Císařová I., Lang K., Londesborough M.G.S. Tuning the Photophysical Properties of anti-B18H22: Efficient Intersystem Crossing between Excited Singlet and Triplet States in New 4,4′-(HS)2-anti-B18H20. Inorg. Chem. 2013;52:9266–9274. doi: 10.1021/ic4004559. PubMed DOI
King R.B. Three-dimensional aromaticity in polyhedral boranes and related molecules. Chem. Rev. 2001;101:1119–1152. doi: 10.1021/cr000442t. PubMed DOI
Londesborough M.G.S., Dolanský J., Cerdán L., Lang K., Jelínek T., Oliva J.M., Hnyk D., Roca-Sanjuán D., Francés-Monerris A., Martinčík J., et al. Thermochromic Fluorescence from B18H20(NC5H5)2: An Inorganic–Organic Composite Luminescent Compound with an Unusual Molecular Geometry. Adv. Opt. Mater. 2017;5:1–16. doi: 10.1002/adom.201600694. DOI
Cerdán L., Braborec J., Garcia-Moreno I., Costela A., Londesborough M.G.S. A borane laser. Nat. Commun. 2015;6:1–7. doi: 10.1038/ncomms6958. PubMed DOI
Bould J., Lang K., Kirakci K., Cerdán L., Roca-Sanjuán D., Francés-Monerris A., Clegg W., Waddell P.G., Fuciman M., Polivka T., et al. A Series of Ultra-Efficient Blue Borane Fluorophores. Inorg. Chem. 2020;59:17058–17070. doi: 10.1021/acs.inorgchem.0c02277. PubMed DOI
Miller R.D., Michl J. Polysilane High Polymers. Chem. Rev. 1989;89:1359–1410. doi: 10.1021/cr00096a006. DOI
Tan C.H., Zhang B.K., Chen J., Zhang L.N., Huang X.G. Study of Hydrolysis Kinetic of New Laser Material [anti-B18H22] Russ. J. Inorg. Chem. 2019;64:1359–1364.
Lin N., Qiao J., Duan L., Wang L., Qiu Y. Molecular Understanding of the Chemical Stability of Organic Materials for OLEDs: A Comparative Study on Sulfonyl, Phosphine-Oxide, and Carbonyl-Containing Host Materials. J. Phys. Chem. C. 2014;118:7569–7578. doi: 10.1021/jp412614k. DOI
Aziz H., Popovic Z.D. Degradation Phenomena in Small-Molecule Organic Light-Emitting Devices. Chem. Mater. 2004;16:4522–4532. doi: 10.1021/cm040081o. DOI
So F., Kondakov D. Degradation mechanisms in small-molecule and polymer organic light-emitting diodes. Adv. Mater. 2010;22:3762–3777. doi: 10.1002/adma.200902624. PubMed DOI
Cerdán L., Francés-Monerris A., Roca-Sanjuán D., Bould J., Dolanský J., Fuciman M., Londesborough M.G.S. Unveiling the role of upper excited electronic states in the photochemistry and laser performance of: Anti-B18H22. J. Mater. Chem. C. 2020;8:12806–12818. doi: 10.1039/D0TC02309D. DOI
Gibb T.C., Kennedy J.D. Proton and boron-11 nuclear spin relaxation and the molecular tumbling of nido-decaborane in perdeuterotoluene solution. An interesting transition in solute–solvent interaction behaviour. J. Chem. Soc. 1982;78:525–536. doi: 10.1039/F29827800525. DOI
Fontaine X.L.R., Greenwood N.N., Kennedy J.D., MacKinnon P. Boron-11 and proton nuclear magnetic resonance study of anti-B18H22 and its anions, anti-[B18H21]− and anti-[B18H20]2−. The crystal and molecular structure of [NMe4]2[anti-B18H20] J. Chem. Soc. Dalton Trans. 1988:1785–1793. doi: 10.1039/DT9880001785. DOI
Hamilton E.J.M., Kultyshev R.G., Du B., Meyers E.A., Liu S., Hadad C.M., Shore S.G. A stacking interaction between a bridging hydrogen atom and aromatic π density in the n-B18H22-benzene system. Chem.-A Eur. J. 2006;12:2571–2578. doi: 10.1002/chem.200501043. PubMed DOI
Londesborough M.G.S., Lang K., Clegg W., Waddell P.G., Bould J. Swollen Polyhedral Volume of the anti-B18H22 Cluster via Extensive Methylation: Anti-B18H8Cl2Me12. Inorg. Chem. 2020;59:2651–2654. doi: 10.1021/acs.inorgchem.0c00179. PubMed DOI
Hunter E.P.L., Lias S.G. Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update. J. Phys. Chem. Ref. Data. 1998;27:413–656. doi: 10.1063/1.556018. DOI
Henderson D.J., Rettner C.T. Encyclopedia of Physical Science and Technology. Elsevier; Amsterdam, The Netherlands: 2003. Physical Chemistry; pp. 159–176.
Barthel J., Neueder R. Encyclopedia of Physical Science and Technology. Elsevier BV; Tarzana, LA, USA: 2003. Chemical Thermodynamics; pp. 767–786.
Karelson M., Shibuya T.I., Wielgus M., Bartkowiak W. Handbook of Solvents. 2nd ed. Volume 1. Elsevier Inc.; Amsterdam, The Netherlands: 2014. Electronic and electrical effects of solvents; pp. 649–723.
Safi Z.S., Omar S. Proton affinity and molecular basicity of m-and p-substituted benzamides in gas phase and in solution: A theoretical study. Chem. Phys. Lett. 2014;610:321–330. doi: 10.1016/j.cplett.2014.07.050. DOI
Hansen C.M. Hansen Solubility Parameters Second edition: A User’s Handbook. Taylor & Francis Group; Boca Raton, FL, USA: 2007. ISBN-10: 0-8493-7248-8.
Kuřitka I., Schauer F., Sáha P., Zemek J., Jiricek P., Nešpůrek S. UV degradability of polysilanes for nanoresists examined by electron spectroscopies and photoluminescence. Czechoslov. J. Phys. 2006;56:41–50. doi: 10.1007/s10582-006-0064-z. DOI
Urbánek P., Kuřitka I. Thickness dependent structural ordering, degradation and metastability in polysilane thin films: A photoluminescence study on representative σ-conjugated polymers. J. Lumin. 2015;168:261–268. doi: 10.1016/j.jlumin.2015.08.022. DOI
Tan C., Chen J., Zhang L., Zhang B., Huang X., Meng H. IOP Conference Series: Earth and Environmental Science. Volume 233. IOP Publishing; Taoyuan City, Taiwan: 2019. The preparation and characterization of n-B18H22-beta cyclodextrin inclusion complex; p. 022005.
Londesborough M.G.S., Dolanský J., Jelínek T., Kennedy J.D., Císařová I., Kennedy R.D., Roca-Sanjuán D., Francés-Monerris A., Lang K., Clegg W. Substitution of the laser borane: Anti-B18H22 with pyridine: A structural and photophysical study of some unusually structured macropolyhedral boron hydrides. Dalton Trans. 2018;47:1709–1725. doi: 10.1039/C7DT03823B. PubMed DOI
Alder R.W., Bryce M.R., Goode N.C., Miller N., Owen J. Preparation of a range of NNN′N′-tetrasubstituted-1,8-diaminonaphthalenes. J. Chem. Soc. Perkin Trans. 1. 1981:2840–2847. doi: 10.1039/P19810002840. DOI
Macropolyhedral syn-B18H22, the "Forgotten" Isomer