Incorporation of the New anti-Octadecaborane Laser Dyes into Thin Polymer Films: A Temperature-Dependent Photoluminescence and Infrared Spectroscopy Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-23513S
Czech Science Foundation
RP/CPS/2022/007
Ministry of Education Youth and Sports
CZ.1.05/2.1.00/19.0409
Operational Programme Reasearch and Development for Innovations cofunded by ERDF and national budget of teh Czech Republic
PubMed
35955965
PubMed Central
PMC9368784
DOI
10.3390/ijms23158832
PII: ijms23158832
Knihovny.cz E-zdroje
- Klíčová slova
- borane cluster, infrared reflection–absorption spectroscopy, photoluminescence spectroscopy, thin film, transition temperature,
- MeSH
- barvicí látky MeSH
- borany * MeSH
- lasery MeSH
- polymery * chemie MeSH
- spektrofotometrie infračervená MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- barvicí látky MeSH
- borany * MeSH
- polymery * MeSH
New anti-octadecaborane(22) laser dyes have been recently introduced. However, their application in solid thin films is limited, despite being very desirable for electronics. Spectroscopic methods, photoluminescence (PL), and infrared reflection-absorption spectroscopy (IRRAS), are here used to reveal structural responses to a temperature change in thin polymer films made of π- and σ-conjugated and non-conjugated polymers and anti-octadecaborane(22) and its tetra-alkylatedderivatives. It has been observed that borane clusters are not firmly fixed within polymer matrices and that their ability for diffusion out of the polymer film is unprecedented, especially at higher temperatures. This ability is related to thermodynamic transitions of polymer macromolecular chains. PL and IRRAS spectra have revealed a clear correlation with β-transition and α-transition of polymers. The influence of structure and molecular weight of a polymer and the concentration and the substitution type of clusters on mobility of borane clusters within the polymer matrix is demonstrated. A solution is proposed that led to an improvement of the temperature stability of films by 45 °C. The well-known spectroscopic methods have proved to be powerful tools for a non-routine description of the temperature behavior of both borane clusters and polymer matrices.
Zobrazit více v PubMed
Sevcik J., Urbanek P., Skoda D., Jamatia T., Nadazdy V., Urbanek M., Antos J., Munster L., Kuritka I. Energy resolved-electrochemical impedance spectroscopy investigation of the role of Al-doped ZnO nanoparticles in electronic structure modification of polymer nanocomposite LEDs. Mater. Des. 2021;205:109738. doi: 10.1016/j.matdes.2021.109738. DOI
Lee J.H., Chen C.H., Lee P.H., Lin H.Y., Leung M.K., Chiu T.L., Lin C.F. Blue organic light-emitting diodes: Current status, challenges, and future outlook. J. Mater. Chem. C. 2019;7:5874–5888. doi: 10.1039/C9TC00204A. DOI
Zhu M.R., Yang C.L. Blue fluorescent emitters: Design tactics and applications in organic light-emitting diodes. Chem. Soc. Rev. 2013;42:4963–4976. doi: 10.1039/c3cs35440g. PubMed DOI
Wang Z.R., Zou Y., Chen W.Q., Huang Y.J., Yao C.J., Zhang Q.C. The Role of Weak Molecular Dopants in Enhancing the Performance of Solution-Processed Organic Field-Effect Transistors. Adv. Electron. Mater. 2019;5:1800547. doi: 10.1002/aelm.201800547. DOI
Cerdan L., Braborec J., Garcia-Moreno I., Costela A., Londesborough M. A borane laser. Nat. Commun. 2015;6:5958. doi: 10.1038/ncomms6958. PubMed DOI
Sevcik J., Urbanek P., Hanulikova B., Capkova T., Urbanek M., Antos J., Londesborough M., Bould J., Ghasemi B., Petrkovsky L., et al. The Photostability of Novel Boron Hydride Blue Emitters in Solution and Polystyrene Matrix. Materials. 2021;14:589. doi: 10.3390/ma14030589. PubMed DOI PMC
Ma M., Guo Y. Physical Properties of Polymers Under Soft and Hard Nanoconfinement: A Review. Chin. J. Polym. Sci. 2020;38:565–578. doi: 10.1007/s10118-020-2380-3. DOI
Jin K.L., Torkelson J.M. T-g-confinement effects in strongly miscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) and polystyrene: Roles of bulk fragility and chain segregation. Polymer. 2017;118:85–96. doi: 10.1016/j.polymer.2017.04.069. DOI
Forrest J.A., DalnokiVeress K., Stevens J.R., Dutcher J.R. Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 1996;77:4108. doi: 10.1103/PhysRevLett.77.4108. PubMed DOI
Kim S., Roth C.B., Torkelson J.M. Effect of Nanoscale Confinement on the Glass Transition Temperature of Free-Standing Polymer Films: Novel, Self-Referencing Fluorescence Method. J. Polym. Sci. Part B Polym. Phys. 2008;46:2754–2764. doi: 10.1002/polb.21591. DOI
Tsui O., Russell T.P., Hawker C.J. Effect of interfacial interactions on the glass transition of polymer thin films. Macromolecules. 2001;34:5535–5539. doi: 10.1021/ma000028v. DOI
Glor E.C., Angrand G.V., Fakhraai Z. Exploring the broadening and the existence of two glass transitions due to competing interfacial effects in thin, supported polymer films. J. Chem. Phys. 2017;146:203330. doi: 10.1063/1.4979944. PubMed DOI
Mattsson J., Forrest J.A., Borjesson L. Quantifying glass transition behavior in ultrathin free-standing polymer films. Phys. Rev. E. 2000;62:5187–5200. doi: 10.1103/PhysRevE.62.5187. PubMed DOI
Priestley R.D., Broadbelt L.J., Torkelson J.M., Fukao K. Glass transition and alpha-relaxation dynamics of thin films of labeled polystyrene. Phys. Rev. E. 2007;75:061806. doi: 10.1103/PhysRevE.75.061806. PubMed DOI
Priestley R.D., Ellison C.J., Broadbelt L.J., Torkelson J.M. Structural relaxation of polymer glasses at surfaces, interfaces and in between. Science. 2005;309:456–459. doi: 10.1126/science.1112217. PubMed DOI
Li Q.F., Hua R., Cheah I.J., Chou K.C. Surface structure relaxation of poly(methyl methacrylate) J. Phys. Chem. B. 2008;112:694–697. doi: 10.1021/jp072147j. PubMed DOI
Serghei A., Mikhailova Y., Huth H., Schick C., Eichhorn K.J., Voit B., Kremer F. Molecular dynamics of hyperbranched polyesters in the confinement of thin films. Eur. Phys. J. E. 2005;17:199–202. doi: 10.1140/epje/i2005-10009-7. PubMed DOI
Badia J.D., Teruel-Juanes R., Acebo C., Gil-Castell O., Serra A.A. Ribes-Greus, Dielectric spectroscopy of novel thiol-ene/epoxy thermosets obtained from allyl-modified hyperbranched poly(ethyleneimine) and diglycidylether of bisphenol A. Eur. Polym. J. 2019;113:98–106. doi: 10.1016/j.eurpolymj.2019.01.001. DOI
Burroughs M.J., Christie D., Gray L.A.G., Chowdhury M., Priestley R.D. 21st Century Advances in Fluorescence Techniques to Characterize Glass-Forming Polymers at the Nanoscale. Macromol. Chem. Phys. 2018;219:1700368. doi: 10.1002/macp.201700368. DOI
Zhang Y., Zhang J.M., Lu Y.L., Duan Y.X., Yan S.K., Shen D.Y. Glass transition temperature determination of poly(ethylene terephthalate) thin films using reflection-absorption FTIR. Macromolecules. 2004;37:2532–2537. doi: 10.1021/ma035709f. DOI
Hajduk B., Bednarski H., Trzebicka B. Temperature-dependent spectroscopic ellipsometry of thin polymer films. J. Phys. Chem. B. 2013;54:341–348. doi: 10.1021/acs.jpcb.9b11863. PubMed DOI PMC
Singh L., Ludovice P.J., Henderson C.L. Influence of molecular weight and film thickness on the glass transition temperature and coefficient of thermal expansion of supported ultrathin polymer films. Thin Solid Films. 2004;449:231–241. doi: 10.1016/S0040-6090(03)01353-1. DOI
Haramina T., Kirchheim R., Tibrewala A., Peiner E. Mechanical spectroscopy of thin polystyrene films. Polymer. 2008;49:2115–2118. doi: 10.1016/j.polymer.2008.03.001. DOI
Londesborough M.G.S., Hnyk D., Bould J., Serrano-Andres L., Sauri V., Oliva J.M., Kubat P., Polivka T., Lang K. Distinct Photophysics of the Isomers of B18H22 Explained. Inorg. Chem. 2012;51:1471–1479. doi: 10.1021/ic201726k. PubMed DOI
Bould J., Lang K.M., Kirakci K., Cerdan L., Roca-Sanjuan D., Frances-Monerris A., Clegg W., Waddell P.G., Fuciman M., Polivka T., et al. A Series of Ultra-Efficient Blue Borane Fluorophores. Inorg. Chem. 2020;59:17058–17070. doi: 10.1021/acs.inorgchem.0c02277. PubMed DOI
Hanulikova B., Capkova T., Antos J., Urbanek M., Urbanek P., Sevcik J., Kuritka I. Temperature dependence of vibrational motions of thin polystyrene films by infrared reflection-absorption spectroscopy: A single measurement tool for monitoring of glass transition and temperature history. Polym. Test. 2021;101:107305. doi: 10.1016/j.polymertesting.2021.107305. DOI
Maliakal A.J. Characterization of Dopant Diffusion within Semiconducting Polymer and Small-Molecule Films Using Infrared-Active Vibrational Modes and Attenuated Total Reflectance Infrared Spectroscopy. ACS Appl. Mater. Interfaces. 2013;5:8300–8307. doi: 10.1021/am401799k. PubMed DOI
Reiser P., Muller L., Sivanesan V., Lovrincic R., Barlow S., Marder S.R., Pucci A., Jaegermann W., Mankel E., Beck S. Dopant Diffusion in Sequentially Doped Poly(3-hexylthiophene) Studied by Infrared and Photoelectron Spectroscopy. J. Phys. Chem. C. 2018;122:14518–14527. doi: 10.1021/acs.jpcc.8b02657. DOI
Sauri V., Oliva J.M., Hnyk D., Bould J., Braborec J., Merchan M., Kubat P., Cisarova I., Lang K., Londesborough M.G.S. Tuning the Photophysical Properties of anti-B18H22: Efficient Intersystem Crossing between Excited Singlet and Triplet States in New 4,4′-(HS)(2)-anti-B18H20. Inorg. Chem. 2013;52:9266–9274. doi: 10.1021/ic4004559. PubMed DOI
Londesborough M.G.S., Dolansky J., Bould J., Braborec J., Kirakci K., Lang K., Cisarova I., Kubat P., Roca-Sanjuan D., Frances-Monerris A., et al. Effect of Iodination on the Photophysics of the Laser Borane anti-B18H22: Generation of Efficient Photosensitizers of Oxygen. Inorg. Chem. 2019;58:10248–10259. doi: 10.1021/acs.inorgchem.9b01358. PubMed DOI
Cossiello R.F., Kowalski E., Rodrigues P.C., Akcelrud L., Bloise A.C., deAzevedo E.R., Bonagamba T.J., Atvars T. Photoluminescence and relaxation processes in MEH-PPV. Macromolecules. 2005;38:925–932. doi: 10.1021/ma048340i. DOI
Botiz I., Freyberg P., Leordean C., Gabudean A.M., Astilean S., Yang A., Stingelin N. Enhancing the Photoluminescence Emission of Conjugated MEH-PPV by Light Processing. ACS Appl. Mater. Interfaces. 2014;6:4974–4979. doi: 10.1021/am4060244. PubMed DOI
Moncada J., Terlier T., Ivanov I.N., Dadmun M.D. Correlation of the Structure with Performance in MEH-PPV/dPS Thin Films Illuminated during Processing. ACS Appl. Polym. Mater. 2021;3:3821–3830. doi: 10.1021/acsapm.1c00410. DOI
Varshni Y.P. Temperature dependence of energy gap in semiconductors. Physica. 1967;34:149–154. doi: 10.1016/0031-8914(67)90062-6. DOI
Kuritka I., Sedlarik V., Harea D., Harea E., Urbanek P., Sloufova I., Coufal R., Zednik J. Polymer Labelling with a Conjugated Polymer-Based Luminescence Probe for Recycling in the Circular Economy. Polymers. 2020;12:1226. doi: 10.3390/polym12061226. PubMed DOI PMC
Toy L.G., Nagai K., Freeman B.D., Pinnau I., He Z., Masuda T., Teraguchi M., Yampolskii Y.P. Pure-gas and vapor permeation and sorption properties of poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (PTMSDPA) Macromolecules. 2000;33:2516–2524. doi: 10.1021/ma991566e. DOI
Kwak G., Fukao S., Fujiki M., Sakaguchi T., Masuda T. Temperature-dependent, static, and dynamic fluorescence properties of disubstituted acetylene polymer films. Chem. Mater. 2006;18:2081–2085. doi: 10.1021/cm052663r. DOI
Pipertzis A., Hossain M.D., Monteiro M.J., Floudas G. Segmental Dynamics in Multicyclic Polystyrenes. Macromolecules. 2018;51:1488–1497. doi: 10.1021/acs.macromol.7b02579. DOI
van Krevelen D.W., editor. Properties of Polymers. 3rd ed. Elsevier; Amsterdam, The Netherlands: 1997. Chapter 4—Volumetric Properties; pp. 71–107.
Suzuki H. Temperature dependence of the electroluminescent characteristics of light-emitting diodes made from poly(methylphenylsilane) Adv. Mater. 1996;8:657–659. doi: 10.1002/adma.19960080812. DOI
Meenu K.M., Bag D.S., Lagarkha R. Synthesis of Functional Photoactive Polysilane Copolymers with Disperse Yellow 7 Methacrylate and Study of their Optical, Photophysical and Thermal Properties. J. Polym. Mater. 2019;36:275–292. doi: 10.32381/JPM.2019.36.03.7. DOI
White R.P., Lipson J.E.G. Polymer Free Volume and Its Connection to the Glass Transition. Macromolecules. 2016;49:3987–4007. doi: 10.1021/acs.macromol.6b00215. DOI
Kazukauskas V., Cyras V., Pranaitis M., Apostoluk A., Rocha L., Sicot L., Raimond P., Sentein C. Influence of polar molecular chain orientation on optical and carrier transport properties of polymer blends. Org. Electron. 2007;8:21–28. doi: 10.1016/j.orgel.2006.10.004. DOI
Giro G., di Marco P.G., Pizzoli M., Ceccorulli G. Detection of polymer thermal transitions by excimer fluorescence, poly-n-vinylcarbazole. Chem. Phys. Lett. 1988;150:159–164. doi: 10.1016/0009-2614(88)80414-7. DOI
Deppe D.D., Dhinojwala A., Torkelson J.M. Small molecule probe diffusion in thin polymer films near the glass transition: A novel approach using fluorescence nonradiative energy transfer. Macromolecules. 1996;29:3898–3908. doi: 10.1021/ma960024j. DOI
Dai A., Wan A., Magee C., Zhang Y., Barlow S., Marder S.R., Kahn A. Investigation of p-dopant diffusion in polymer films and bulk heterojunctions: Stable spatially-confined doping for all-solution processed solar cells. Org. Electron. 2015;23:151–157. doi: 10.1016/j.orgel.2015.04.023. DOI
Kawana S., Jones R. Character of the glass transition in thin supported polymer films. Phys. Rev. E. 2001;63:021501. doi: 10.1103/PhysRevE.63.021501. PubMed DOI
Yang Q., Chen X., He Z., Lan F., Liu H. The glass transition temperature measurements of polyethylene: Determined by using molecular dynamic method. RSC Adv. 2016;6:12053–12060. doi: 10.1039/C5RA21115H. DOI
Tan C.H., Zhang B.K., Chen J., Zhang L.N., Huang X.G., Meng H.Y. Study of Hydrolysis Kinetic of New Laser Material [anti-B18H22] Russ. J. Inorg. Chem. 2019;64:1359–1364. doi: 10.1134/S0036023619110214. DOI
Kim J.H., Jang J., Zin W.C. Thickness dependence of the glass transition temperature in thin polymer films. Langmuir. 2001;17:2703–2710. doi: 10.1021/la001125k. DOI