Surface Properties of 1DTiO2 Microrods Modified with Copper (Cu) and Nanocavities

. 2021 Jan 27 ; 11 (2) : . [epub] 20210127

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33513841

Grantová podpora
18-15613S Grantová Agentura České Republiky

This work deals with Cu-modified 1DTiO2 microrods (MRs) and their surface properties. The pristine lyophilized precursor Cu_1DTiO2, prepared by an environmentally friendly cryo-lyophilization method, was further annealed in the temperature interval from 500 to 950 °C. The microstructure of all samples was characterized by electron microscopy (SEM/EDS and HRTEM/SAED), X-ray powder diffraction (XRD), infrared spectroscopy, simultaneous DTA/TGA thermoanalytical measurement, and mass spectroscopy (MS). Special attention was paid to the surface structure and porosity. The 1D morphology of all annealed samples was preserved, but their surface roughness varied due to anatase-rutile phase transformation and the change of the nanocrystals habits due to nanocavities formation after releasing of confined ice-water. The introduction of 2 wt.% Cu as electronically active second species significantly reduced the direct bandgap of 1DTiO2 in comparison with undoped TiO2 and the standard Degussa TiO2_P25. All samples were tested for their UV absorption properties and H2 generation by PEC water splitting. We presented a detailed study on the surface characteristics of Cu doped 1DTiO2 MRs due to gain a better idea of their photocatalytic activity.

Zobrazit více v PubMed

Klabunde K.J., Erickson L., Koper O., Richards R. Review of Nanoscale Materials in Chemistry: Environmental Applications. Nanoscale Materials in Chemistry: Environmental Applications. ACS Symp. Ser. 2010;1045:1–13.

Negishi N., Iyoda T., Hashimoto K., Fujishima A. Preparation of Transparent TiO2 Thin Film Photocatalyst and Its Photocatalytic Activity. Chem. Lett. 1995;9:841–842. doi: 10.1246/cl.1995.841. DOI

Kudo A., Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009;38:253–278. doi: 10.1039/B800489G. PubMed DOI

Mor G.K., Shankar K., Pauloze M., Varghese O.K., Grimes C.A. Highly Efficient Solar Cells using TiO2 Nanotube Arrays Sensitized with a Donor-Antenna Dye. Nano Lett. 2006;6:215–218. doi: 10.1021/nl052099j. PubMed DOI

Xu H., Jia F., Ai Z., Zhang L. A General Soft Interface Platform for the Growth and Assembly of Hierarchical Rutile TiO2 Nanorods Spheres. Cryst. Growth Des. 2007;7:1216–1219. doi: 10.1021/cg0609419. DOI

Francioso L., Taurino A.M., Forleo A., Siciliano P. TiO2 nanowires array fabrication and gas sensing properties. Sens. Actuators B. 2008;130:70–76. doi: 10.1016/j.snb.2007.07.074. DOI

Yoong L., Chong F.K., Dutta B.K. Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy. 2009;34:1652–1661. doi: 10.1016/j.energy.2009.07.024. DOI

Byrnea C., Moran L., Hermosilla D., Merayo N., Blanco Á., Rhatigan S., Hinder S., Ganguly P., Nolan M., Pillai S.C. Effect of Cu doping on the anatase-to-rutile phase transition in TiO2 photocatalysts: Theory and experiments. Appl. Catal. B Environ. 2019;246:266–276. doi: 10.1016/j.apcatb.2019.01.058. DOI

Colon G., Maicu M., Hidalgo M.C., Navio J.A. Cu-doped TiO2 systems with improved photocatalytic activity. Appl. Catal. B. 2006;67:41–51. doi: 10.1016/j.apcatb.2006.03.019. DOI

Yadav H.M., Otari S.V., Koli V.B., Mali S.S., Hong C.K., Pawar S.H., Delekar S.D. Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. J. Photochem. Photobiol. A Chem. 2014;280:32–38. doi: 10.1016/j.jphotochem.2014.02.006. DOI

Wong R.S., Feng J., Hu X., Yue P.L. Discoloration and mineralization of non-biodegradable azo dye orange II by copper-doped TiO2 nanocatalysts. J. Environ. Sci. Health. 2004;39:2583–2595. doi: 10.1081/ESE-200027013. PubMed DOI

Lalitha K., Sadanandam G., Kumari V.D., Subrahmanyam M., Sreedhar B., Hebalkar N.Y. Highly stabilized and finely dispersed Cu2O/TiO2: A promising visible sensitive photocatalyst for continuous production of hydrogen from glycerol: Water mixtures. J. Phys. Chem. 2010;114:22181–22189. doi: 10.1021/jp107405u. DOI

Momeni M.M., Ghayeb Y., Ghonchegi Z. Fabrication and characterization of copper doped TiO2 nanotube arrays by in situ electrochemical method as efficient visiblelight photocatalyst. Ceram. Int. 2015;41:8735–8741. doi: 10.1016/j.ceramint.2015.03.094. DOI

Nishikiori H., Sato T., Kubota S., Tanaka N., Shimizu Y., Fujii T. Preparation of Cudoped TiO2 via refluxing of alkoxide solution and its photocatalytic properties. Res. Chem. Intermed. 2012;38:595–613. doi: 10.1007/s11164-011-0374-z. DOI

Mathew S., Ganguly P., Rhatigan S., Kumaralev V., Byrne C., Hinder S., Bartlett J., Nolan M., Pillai S. Cu-Doped TiO2: Visible Light Assisted Photocatalytic Antimicrobial Activity. Appl. Sci. 2018;11:2067. doi: 10.3390/app8112067. DOI

Obregon S., Munoz-Batista M., Fernandez-Garcia M., Kubacka A., Colon G. Cu/TiO2 system for the photocatalytic H2 production: Influence of structural and surface support features. Appl. Catal. B Environ. 2015;176:468–478. doi: 10.1016/j.apcatb.2015.05.043. DOI

Bensouici F., Bououdina M., Dakhel A., Tala-Ighil R., Tounane M., Iratni A., Souier T., Liu S., Cai W. Optical, structural and photocatalytic properties of Cu doped TiO2 thin films. Appl. Surf. Sci. 2017;395:110–116. doi: 10.1016/j.apsusc.2016.07.034. DOI

Wang C., Hu Q., Huang J., Zhu C., Deng Z., Shi H., Wu L., Liu Z., Cao Y. Enhanced hydrogen production by water splitting using Cu doped TiO2 film with prefered (001) orientation. Appl. Surf. Sci. 2014;292:161–164. doi: 10.1016/j.apsusc.2013.11.105. DOI

Hernández J.V., Coste S., Murillo A.G., Romo F.C., Kassiba A. Effects of Metal Doping (Cu, Ag, Eu) on the Electronic and Optical Behavior of Nanostructured TiO2. J. Alloy. Compd. 2017;710:355–363. doi: 10.1016/j.jallcom.2017.03.275. DOI

Bakardjieva S., Mares J., Fajgar R., Zenou V., Maleckova M., Chatzisymeon E., Bibova H., Jirkovsky J. The relationship between microstructure and photocatalytic behavior in lanthanum-modified 2D TiO2 nanosheets upon annealing of a freeze-cast precursor. RSC Adv. 2019;9:22988–23003. doi: 10.1039/C9RA03940F. PubMed DOI PMC

Mamon F., Fajgar R., Jandova V., Koci E., Jakubec I., Zhigunov A., Brovdyova T., Bakardjieva S. TiO2 microrods with stacked 3D nanovoids for photoelectrochemical water splitting. Pure Appl. Chem. 2019;91:1733–1747. doi: 10.1515/pac-2018-1116. DOI

Stengl V., Bakardjieva S. Molybdenum-doped anatase and its extraordinary photocatalytic activity in the degradation of Orange II in the UV and Vis regions. J. Phys. Chem. C. 2010;114:19308–19317. doi: 10.1021/jp104271q. DOI

Zenou V., Bakardjieva S. Microstructural analysis of undoped and moderately Sc doped TiO2 anatase nanoparticles using Scherre equation and debye function analysis. Mater. Charact. 2018;144:287–296. doi: 10.1016/j.matchar.2018.07.022. DOI

Volfova L., Plizingrova E., Ecochard P., Motlochova M., Klementova M., Janosikova P., Bezdicka P., Kupcik J., Krysa J., Lančok A., et al. Tailoring Photocatalytic Activity of TiO2 Nanosheets by 57Fe. J. Phys. Chem. C. 2020;124:6669–6682. doi: 10.1021/acs.jpcc.9b11781. DOI

Zenou V., Bertolotti F., Guagliardi A., Toby B.H., Dreele R.V., Bakardjieva S. In situ high temperature X ray diffraction study of Sc-doped titanium oxide nanocrystallites. J. Appl. Cryst. 2020;53:1452–1461. doi: 10.1107/S1600576720012017. DOI

Labar J.L. Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction program. Ultramicroscopy. 2005;103:237–249. doi: 10.1016/j.ultramic.2004.12.004. PubMed DOI

Colón G., Hidalgo M.C., Navío J.A. Effect of ZrO2 incorporation and calcination temperature on the photocatalytic activity of commercial TiO2 for salicylic acid and Cr (VI) photodegradation. Appl. Catal. A Gen. 2002;231:185–189. doi: 10.1016/S0926-860X(02)00051-0. DOI

Satuf M.L. Photocatalytic degradation of 4-chlorophenol: A kinetic study. Appl. Catal. B Environ. 2008;82:37–49. doi: 10.1016/j.apcatb.2008.01.003. DOI

Grätzel M., Serpone N., Pelizzetti E. Kinetic studies in heterogeneous photocatalysis. 2. Titania-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-Dichlorophenol, and 2,4,5-Trichlorophenol in Air-Equilibrated Aqueous Media. Langmuir. 1989;5:250–255.

Shannon R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 1976;32:751–767. doi: 10.1107/S0567739476001551. DOI

Scherrer P. Kolloidchemie Ein Lehrbuch. Springer; Heidelberg/Berlin, Germany: 1912. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen; pp. 387–409.

Ranade M.R., Navrotsky A., Zhang H.Z., Banfield J.F., Elder S.H., Zaban A., Borse P.H., Kulkarni S.K., Doran G.S., Whitfield H.J. Energetics of nanocrystalline TiO2. PNAS. Proc. Natl. Acad. Sci. USA. 2002;99:6476–6481. doi: 10.1073/pnas.251534898. PubMed DOI PMC

Hanaor D., Sorrell C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011;46:855–874. doi: 10.1007/s10853-010-5113-0. DOI

Zhu H., Tao J., Dong X. Preparation and Photochemical activity of Cr-doped TiO2 nanorods with nanocavities. J. Phys. Chem. C. 2010;114:2873–2879. doi: 10.1021/jp9085987. DOI

Kumar D.P., Reddy N.L., Kumari M.M., Srinivas B., Kumari V.D., Sreedhar B., Roddatis V., Bondarchuk O., Karthik M., Neppolian B., et al. Cu2O-sensitized TiO2 nanorods with nanocavities for highly efficient photocatalytic hydrogen production under solar irradiation. Sol. Energy Mater. Sol. Cells. 2015;136:157–166. doi: 10.1016/j.solmat.2015.01.009. DOI

Westen T.V., Groot R. Effect of temperature Cycling on Qswald Ripening. Cryst. Growth Des. 2018;18:4952–4962. doi: 10.1021/acs.cgd.8b00267. PubMed DOI PMC

Ostwald W.Z. Biomolecule-assisted synthesis of cobalt sulfide nanowires for application in supercapacitors. J. Phys. Chem. 1900;34:495–503.

Aleman J., Chadwick A.V., He J., Hess M., Horie K., Jones R.G. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials. Pure Appl. Chem. 2007;79:1801–1827. doi: 10.1351/pac200779101801. DOI

Zhao Q. Micro Nano Technologies. 1st ed. Elsevier; Liaoning, China: 2020. Advanced Nanomaterials for Pollutant Sensing and Environmental Catalysis; p. 442.

Fu N., Wu Y., Jin Z., Li G. Structural dependent photoactivities of TiO2 nanoribbon for visible light induced H2 evolution: The role of nanocavities and alternate structutes. Langmuir. 2010;26:447–455. doi: 10.1021/la902042a. PubMed DOI

Akshay V.R., Arun B., Mandal G., Chanda A., Vasundhara M. Significant reduction in the optical band-gap and defect assisted magnetic response in Fe-doped anatase TiO2 nanocrystals as dilute magnetic semiconductors. New J. Chem. 2019;43:6048–6062. doi: 10.1039/C9NJ00275H. DOI

Santara B., Giri P.K., Imakita K., Fujii M. Evidence for Ti Interstitial Induced Extended Visible Absorption and Near Infrared Photoluminescence from Undoped TiO2 Nanoribbons: An In Situ Photoluminescence Study. J. Phys. Chem. C. 2013;117:23402–23411. doi: 10.1021/jp408249q. DOI

Kale G., Arbuj S., Chothe U., Khore S., Nikam L., Kale B. Highly Crystalline Ordered Cu-doped TiO2 Nanostructure by Paper Templated Method: Hydrogen Production and Dye Degradation under Natural Sunlight. J. Compos. Sci. 2020;4:48. doi: 10.3390/jcs4020048. DOI

Justicia I., Ordejon P., Canto G., Mozos J.L., Fraxedes J., Battiston G.A., Gerbasi R., Figueras A. Designed Self-Doped Titanium Oxide Thin Films for Efficient Visible-Light Photocatalysis. Adv. Mater. 2002;14:1399–1402. doi: 10.1002/1521-4095(20021002)14:19<1399::AID-ADMA1399>3.0.CO;2-C. DOI

Barreca D., Fornasiero P., Gasparotto A., Gombac V., Maccato C., Montini T. The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production. Chemsuschem. 2009;23:30–33. PubMed

Lim Y.F., Chua C.S., Lee C.J.J., Chi D. Sol-gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Phys. Chem. Chem. Phys. 2014;16:25928–25934. doi: 10.1039/C4CP03241A. PubMed DOI

Shaislamov U., Lee H.J. Synthesis and photoelectrochemical properties of a novel CuO/ZnO nanorod photocathode for solar hydrogen generation. J. Korean Phys. Soc. 2016;69:1242–1246. doi: 10.3938/jkps.69.1242. DOI

Kampmann J., Betzler S., Hajizani H., Haringer S., Beetz M., Harzer T., Kraus J., Lotsch B., Scheu C., Pantcheva R., et al. How photocorrosion can trick you: A detailed study on lowbandgap Li doped CuO photocathodes for solar hydrogen production. Nanoscale. 2020;12:7766–7775. doi: 10.1039/C9NR10250G. PubMed DOI

Bandara J., Udawatta C., Rajapakse C. Highly stable CuO incorporated TiO2 catalyst for photocatalytic hydrogen production from H2O. Photochem. Photobiol. Sci. 2005;4:857–861. doi: 10.1039/b507816d. PubMed DOI

Song K.Y., Kwon Y.T., Choi G.J., Lee W.I. Photocatalytic activity of Cu/TiO2 with the oxidation state of surface-loaded copper. Bull. Korean Chem. Soc. 1999;20:957.

Colon G. Towards the hydrogen production by photocatalysis. Appl. Catal. A Gen. 2016;518:48–59. doi: 10.1016/j.apcata.2015.11.042. DOI

Fisher M.B., Keane D.A., Fernandez-Ibanez P., Colreavy J., Hinder S.J., McGuigan K.G., Pillai S.C. Nitrogen and copper doped solar light active TiO2 photocatalysts for water decontamination. Appl. Catal. B. 2013;130:8–13. doi: 10.1016/j.apcatb.2012.10.013. DOI

Xing H., Guo L.E.Z., Zhao D., Li X., Liu Z. Exposing the photocorrosion mechanism and control strategies of a CuO photocathode. Inorg. Chem. Front. 2019;6:2488–2499. doi: 10.1039/C9QI00780F. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...