The relationship between microstructure and photocatalytic behavior in lanthanum-modified 2D TiO2 nanosheets upon annealing of a freeze-cast precursor
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35514506
PubMed Central
PMC9067125
DOI
10.1039/c9ra03940f
PII: c9ra03940f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Titanium dioxide modified with 3 wt% La was prepared via a green freeze-casting method, and its photocatalytic activity was tested in terms of its ability to degrade 4-chlorophenol (4-CP) and remove total organic carbon (TOC). Under annealing conditions, the freeze-cast precursor was transformed into an La-modified anatase with a well-defined 2D TiO2 nanosheet morphology. Rietveld refinement of the X-ray diffraction patterns confirmed the substitutional nature of the La cation that induced local structural variations and involved subtle ion displacement in the TiO2 lattice due to the ionic size effect. Despite nearly identical tetragonal structures, replacement of Ti with La alters the photocatalytic activity through a reduction in band gap energies and an increase in charge carrier mobility. Material annealed at 650 °C exhibited the highest photocatalytic performance and achieved efficient TOC removal. Upon annealing at 800 °C, nanoscale lanthanum-enriched regions were generated due to the diffusive migration of La cations and phase transition from anatase to rutile. The La3+ cation, acting as a structural promoter, supported 2D TiO2 growth with well controlled crystallite size, surface area and porosity. La3+ could be regarded as a potential electronic promoter that can reduce the band gap of 2D TiO2 nanosheets and can provide a signature of the electron transfer and carrier charge separation. Both methods, kinetics of degradation of 4-CP and TOC, provided similar results, revealing that the photocatalytic activity under UV light irradiation increased in the order 950C < 500 °C < 800 °C < 650 °C < TiO2-P25.
Charles University Faculty of Science Hlavova 2030 8 128 42 Prague Czech Republic
Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68 Husinec Řež Czech Republic
Nuclear Research Center Negev Department of Material Engineering 841 90 Beer Sheva Israel
Zobrazit více v PubMed
Pera-Titus M. Molina V. G. Baños M. A. et al. . Appl. Catal., B. 2004;47:219–256. doi: 10.1016/j.apcatb.2003.09.010. DOI
Verbruggen S. W. J. Photochem. Photobiol., C. 2015;24:64–82. doi: 10.1016/j.jphotochemrev.2015.07.001. DOI
Ranjit K. T. Willner I. Bossmann S. H. Braun A. M. J. Catal. 2001;204:305–313. doi: 10.1006/jcat.2001.3388. DOI
Jiang Y. Ning H. Tian Ch. Jiang B. J. Li Q. Yan H. Zhang X. Wang J. Jing L. Fu H. Appl. Catal., B. 2018;229:1–7. doi: 10.1016/j.apcatb.2018.01.079. DOI
Hu S. Hu S. Qiao P. Zhang L. Jiang B. J. Gao Y. Hou F. Wu B. Li Q. Jiang Y. Tian Ch. Zhou W. Tian G. Fu H. Appl. Catal., B. 2018;239:317–323. doi: 10.1016/j.apcatb.2018.08.017. DOI
United Nation's, Globally System of Classification and Labeling of Chemicals, UN, New York and Geneva, 4th edn, 2011, ISBN no. 978-92-1-117042-9
In S. Orlov A. Garcia F. Tikhov M. Wright D. S. Lambert R. M. Chem. Commun. 2006;40:4236–4238. doi: 10.1039/B610316B. PubMed DOI
Lukáč J. et al. . Appl. Catal., B. 2007;74:83–91. doi: 10.1016/j.apcatb.2007.01.014. DOI
Kudo A. Kato H. Tsuji I. Chem. Lett. 2004;33:1534–1539. doi: 10.1246/cl.2004.1534. DOI
Liu H. C. Wang H. Shen J. H. Sun Y. Liu Z. M. Catal. Today. 2008;131:444–449. doi: 10.1016/j.cattod.2007.10.048. DOI
Cunha A. F. Mahata N. Orfao J. M. Figueiredo J. L. Energy Fuels. 2009;23:4047–4050. doi: 10.1021/ef900385e. DOI
Kam R. Selomulya C. Amal R. Scott J. J. Catal. 2010;273(1):73–81. doi: 10.1016/j.jcat.2010.05.004. doi: 10.1016/j.jcat.2010.05.004. DOI
Ng J. Sugii N. Kakushima K. Ahmet P. Tsutsui K. Hattori T. Iwai H. IEICE Electronic Express. 2006;3:316–321. doi: 10.1587/elex.3.316. DOI
Liquang J. Xiaojun S. Baifu X. Baiqi W. Weimin C. Honggang F. J. Solid State Chem. 2004;177:3375–3382. doi: 10.1016/j.jssc.2004.05.064. DOI
Ako R. T. Ekanayake P. Tan A. L. Young D. J. Mater. Chem. Phys. 2016;172:105–112. doi: 10.1016/j.matchemphys.2015.12.066. DOI
Liu Y. Zhou S. Li J. Wang Y. Jiang G. Zhao Zh. Liu B. Gong X. Duan A. Liu J. Wei J. Zhang L. Appl. Catal., B. 2005;168–169:125–131. doi: 10.1016/j.apcata.2004.12.043. DOI
Zhang J. Zhao Z. Wang X. Yu T. Guan J. Yu Zh. Li Zh. Zhigang Z. Zh. J. Phys. Chem. C. 2010;114:18396–18400. doi: 10.1021/jp106648c. DOI
Carter C. B., and Norton M. G., Sols, Gels, and Organic Chemistry, in Ceramic Materials, Springer, New York, NY, 2007
McKee C. T. Walz J. Y. J. Am. Ceram. Soc. 2009;92:916–921. doi: 10.1111/j.1551-2916.2009.02999.x. DOI
Mukai S. R. Nishihara H. Shichi S. Tamon H. Chem. Mater. 2004;16(24):4987–4991. doi: 10.1021/cm0491328. DOI
Borlaf M. Poveda J. M. Moreno R. Colomer M. T. J. Sol-Gel Sci. Technol. 2012;63:408–415. doi: 10.1007/s10971-012-2802-y. DOI
Lee J. Cheng Y. J. Controlled Release. 2006;111:185–192. doi: 10.1016/j.jconrel.2005.12.003. PubMed DOI
Yuan S. Sheng Q. Zhang J. Chen F. Anpo M. Zhang Q. Microporous Mesoporous Mater. 2005;79:93–99. doi: 10.1016/j.micromeso.2004.10.028. DOI
Bakardjieva S. Subrt J. Pulisova P. Marikova M. Szatmary L. Mater. Res. Soc. Symp. Proc. 2011;1352:129–134. doi: 10.1557/opl.2011.1132. doi: 10.1557/opl.2011.1132. DOI
Subrt J. Pulisova P. Bohacek J. Bezdicka P. Plizingrova E. Volfova L. Kupcik J. Mater. Res. Bull. 2014;49:405–412. doi: 10.1016/j.materresbull.2013.09.028. DOI
Plizingrova E. Volfova L. Svora P. Labhsetwar N. Klementova M. Szatmary L. Subrt J. Catal. Today. 2015;240:107–113. doi: 10.1016/j.cattod.2014.04.022. DOI
Bakardjieva S. Fajgar R. Jakubec I. Koci E. Zhigunov A. Chatzisymeon E. Davididou K. Catal. Today. 2019;328:189–201. doi: 10.1016/j.cattod.2018.12.037. DOI
JCPDS PDF-4 database, International Centre for Diffraction Data, Newtown Square, PA, USA, release 2015
Toby B. H. Von Dreele R. B. J. Appl. Crystallogr. 2013;46(2):544–549. doi: 10.1107/S0021889813003531. DOI
Scherrer P. Gottinger Nachrichle. 1918;2:98–100.
Palmer D. C., CrystalMaker, CrystalMaker Software, Ltd, Begbroke, Oxfordshire, England, 2014
Labar J. L. Ultramicroscopy. 2005;103(3):237–249. doi: 10.1016/j.ultramic.2004.12.004. PubMed DOI
Brunauer S. Emmett P. H. Teller E. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI
Barrett E. P. Joyner L. G. Halenda P. P. J. Am. Chem. Soc. 1951;73:373–380. doi: 10.1021/ja01145a126. DOI
Peral J. Ollis D. J. Catal. 1992;136:554–565. doi: 10.1016/0021-9517(92)90085-V. DOI
Al-Ekabi H. Serpone N. Langmuir. 1989;5:250–255. doi: 10.1021/la00085a048. DOI
Theurich J. Lindner M. Bahnemann D. W. Langmuir. 1996;12:6368–6376. doi: 10.1021/la960228t. DOI
Colón G. Hidalgo M. C. Navío J. A. Appl. Catal., A. 2002;231:185–189. doi: 10.1016/S0926-860X(02)00051-0. DOI
Satuf M. L. et al. . Appl. Catal., B. 2008;82:37–49. doi: 10.1016/j.apcatb.2008.01.003. DOI
Grätzel M., Serpone N. and Pelizzetti E., Photocatalysis, Fundamentals and Applications, Wiley, New York, 1989
Ghosh S. Vasudevan A. Rao P. Warrier K. Br. Ceram. Trans. 2001;100:151–154. doi: 10.1179/096797801681378. DOI
Li K. Wei S. Yang W. J. Phys. Chem. Solids. 2011;72:643–647. doi: 10.1016/j.jpcs.2011.02.010. DOI
Ding X. Z. Liu X. H. J. Mater. Res. 1998;13:2556–2559. doi: 10.1557/JMR.1998.0356. DOI
Sadhu S. Poddar P. RSC Adv. 2013;3:10363–10369. doi: 10.1039/C3RA40746B. DOI
Xin Y. Liu H. J. Solid State Chem. 2001;184:3240–3246. doi: 10.1016/j.jssc.2011.10.017. DOI
Trujillo-Navarrete B. del Pilar Haro-Vásquez M. Félix-Navarro R. M. Paraguay Delgado F. Alvarez-Huerta H. Pérez-Sicairos S. Reynoso-Soto E. A. J. Rare Earths. 2017;35:259–270. doi: 10.1016/S1002-0721(17)60909-8. DOI
Li W. Frenkel A. I. Woicik J. C. Ni C. Ismat Shah S. Phys. Rev. B Condens. Matter Mater. Phys. 2005;72:155315. doi: 10.1103/PhysRevB.72.155315. DOI
Liqiang J. Xiaojin S. Baifu X. Baiqi W. Weimin C. Honggang F. J. Solid State Chem. 2004;177(10):3375–3382. doi: 10.1016/j.jssc.2004.05.064. DOI
Schwarzenbach D. Inorg. Chem. 1970;9:2391–2397. doi: 10.1021/ic50093a002. DOI
Xie Y. B. Yuan C. W. Appl. Surf. Sci. 2004;221:17–24. doi: 10.1016/S0169-4332(03)00945-0. DOI
Maleckova M., BSc thesis, Charles University, Prague, 2014, https://is.cuni.cz/webapps/zzp/detail/160373/
Kröger F. A. and Vink H. J., Solid State Physics, vol. 3, Academic, New York, 1956
Edelson L. Glaeser A. J. Am. Ceram. Soc. 1988;71:225–235. doi: 10.1111/j.1151-2916.1988.tb05852.x. DOI
Parker J. Siegel R. J. Mater. Res. 1990;5:1246–1252. doi: 10.1557/JMR.1990.1246. DOI
Plizingrova E E. Klementova M. Bezdicka P. Bohacek J. Barbierikova Z. Dvoranova D. Mazur M. Krysa J. Subrt J. Brezova V. Catal. Today. 2017;281(1):165–180. doi: 10.1016/j.cattod.2016.08.013. DOI
Gupta A. Int. J. Drug Dev. Res. 2012;4:35–40.
Li K. Wei S. Yang W. J. Phys. Chem. Solids. 2011;72:643–647. doi: 10.1016/j.jpcs.2011.02.010. DOI
IUPAC, Compendium of Chem. Technol, The Gold Book, ed. A. D. McNaught and A. Wilkinson, 2nd edn, 2006, ISNB 0-9678550-9-8, 10.1351/goldbook DOI
Gopalan R. Lin Y. Ind. Eng. Chem. Res. 1995;34:1189–1195. doi: 10.1021/ie00043a022. DOI
Kumar K. Keizer S. Burggraaf A. J. Mater. Chem. 1993;3:917–922. doi: 10.1039/JM9930300917. DOI
Wang Z. Chen J. Hu X. Mater. Lett. 2000;43:87–90. doi: 10.1016/S0167-577X(99)00236-0. DOI
Ayers M. Hunt A. Mater. Lett. 1998;34:290–293. doi: 10.1016/S0167-577X(97)00181-X. DOI
Burgos A. M. Langlet M. Thin Solid Films. 1999;349:19–23. doi: 10.1016/S0040-6090(99)00139-X. DOI
Yuan S. Sheng Q. Zhang J. Chen F. Anpo M. Zhang Q. Microporous Mesoporous Mater. 2005;79:93–99. doi: 10.1016/j.micromeso.2004.10.028. DOI
Biesinger M. C. Lau L. W. M. Gerson A. R. Smart R. S. C. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI
Falkowski M. Kunneth Ch. Materlik R. Kersch A. npj Comput. Mater. 2018;73:1–9.
Reddy B. Chowdhury B. Smirniotis P. Appl. Catal., A. 2001;219:53–60. doi: 10.1016/S0926-860X(01)00658-5. DOI
Anandan S. Ikuma Y. Murugesan V. Int. J. Photoenergy. 2012:921412. doi: 10.1155/2012/921412. DOI
Owen S. M., A Guide to Modern Inorganic Chemistry, Willey, New York, 1991, ISBN 05820643920470216948
Kato H. Asakura K. Kudo A. J. Am. Chem. Soc. 2003;125:3082–3089. doi: 10.1021/ja027751g. PubMed DOI
Terzian R. Serpone N. Fox M. A. J. Photochem. Photobiol., A. 1995;90(2–3):125–135. doi: 10.1016/1010-6030(95)04090-3. DOI
Anandan S. et al. . J. Mol. Catal. A: Chem. 2007;266:2149–2157. doi: 10.1016/j.molcata.2006.11.008. DOI
Rabenstein D. L. Anal. Chem. 1971;43:1599–1605. doi: 10.1021/ac60306a038. DOI
Maldotti A. Molinari A. Amadelli R. Chem. Rev. 2002;102:3811–3820. doi: 10.1021/cr010364p. PubMed DOI
Ohtani B. Prieto-Mahaney O. O. Li D. Abe R. J. Photochem. Photobiol., A. 2010;216:179–182. doi: 10.1016/j.jphotochem.2010.07.024. DOI
Tiwari A. and Uzun L., Advanced Functional Materials, ed. A. Tiwari and L. Uzun, Wiley, 2015
Hurum D. C. Agrios A. G. Gray K. A. Rajh T. Thurnauer M. C. J. Phys. Chem. B. 2003;107:4545–4549. doi: 10.1021/jp0273934. DOI
Morris R. Owen J. Cheetham A. J. Phys. Chem. Solids. 1995;56:1297–1303. doi: 10.1016/0022-3697(95)00062-3. DOI
McCulloch I. Heeney M. Bailey C. Genevicius K. McDonald I. Shkunov M. Sparrowe D. Tiemey S. Wagner R. Zhang W. Chabinyc M. L. Kline R. J. McGehee M. D. Toney M. F. Nat. Mater. 2006;5:328–333. doi: 10.1038/nmat1612. PubMed DOI
Liu Y. Zhou S. Li J. Wang Y. Jiang G. Zhao Zh. Liu B. Gong X. Duan A. Liu J. Wei J. Zhang L. Appl. Catal., B. 2005;168–169:125–131. doi: 10.1016/j.apcata.2004.12.043. DOI
Rajeswari Yogamalar N. Chandra Bose A. Appl. Phys. 2011;103:33–42.
Wang C. Pagel R. Dohrmann J. K. Bahnemann D. W. C. R. Chim. 2006;9:761–773. doi: 10.1016/j.crci.2005.02.053. DOI
Ma Z. Li Y. Lv Y. Sa R. Li Q. Wu K. ACS Appl. Mater. Interfaces. 2018;10:39327–39335. doi: 10.1021/acsami.8b12178. PubMed DOI
Surface Properties of 1DTiO2 Microrods Modified with Copper (Cu) and Nanocavities