The relationship between microstructure and photocatalytic behavior in lanthanum-modified 2D TiO2 nanosheets upon annealing of a freeze-cast precursor

. 2019 Jul 23 ; 9 (40) : 22988-23003. [epub] 20190725

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35514506

Titanium dioxide modified with 3 wt% La was prepared via a green freeze-casting method, and its photocatalytic activity was tested in terms of its ability to degrade 4-chlorophenol (4-CP) and remove total organic carbon (TOC). Under annealing conditions, the freeze-cast precursor was transformed into an La-modified anatase with a well-defined 2D TiO2 nanosheet morphology. Rietveld refinement of the X-ray diffraction patterns confirmed the substitutional nature of the La cation that induced local structural variations and involved subtle ion displacement in the TiO2 lattice due to the ionic size effect. Despite nearly identical tetragonal structures, replacement of Ti with La alters the photocatalytic activity through a reduction in band gap energies and an increase in charge carrier mobility. Material annealed at 650 °C exhibited the highest photocatalytic performance and achieved efficient TOC removal. Upon annealing at 800 °C, nanoscale lanthanum-enriched regions were generated due to the diffusive migration of La cations and phase transition from anatase to rutile. The La3+ cation, acting as a structural promoter, supported 2D TiO2 growth with well controlled crystallite size, surface area and porosity. La3+ could be regarded as a potential electronic promoter that can reduce the band gap of 2D TiO2 nanosheets and can provide a signature of the electron transfer and carrier charge separation. Both methods, kinetics of degradation of 4-CP and TOC, provided similar results, revealing that the photocatalytic activity under UV light irradiation increased in the order 950C < 500 °C < 800 °C < 650 °C < TiO2-P25.

Zobrazit více v PubMed

Pera-Titus M. Molina V. G. Baños M. A. et al. . Appl. Catal., B. 2004;47:219–256. doi: 10.1016/j.apcatb.2003.09.010. DOI

Verbruggen S. W. J. Photochem. Photobiol., C. 2015;24:64–82. doi: 10.1016/j.jphotochemrev.2015.07.001. DOI

Ranjit K. T. Willner I. Bossmann S. H. Braun A. M. J. Catal. 2001;204:305–313. doi: 10.1006/jcat.2001.3388. DOI

Jiang Y. Ning H. Tian Ch. Jiang B. J. Li Q. Yan H. Zhang X. Wang J. Jing L. Fu H. Appl. Catal., B. 2018;229:1–7. doi: 10.1016/j.apcatb.2018.01.079. DOI

Hu S. Hu S. Qiao P. Zhang L. Jiang B. J. Gao Y. Hou F. Wu B. Li Q. Jiang Y. Tian Ch. Zhou W. Tian G. Fu H. Appl. Catal., B. 2018;239:317–323. doi: 10.1016/j.apcatb.2018.08.017. DOI

United Nation's, Globally System of Classification and Labeling of Chemicals, UN, New York and Geneva, 4th edn, 2011, ISBN no. 978-92-1-117042-9

In S. Orlov A. Garcia F. Tikhov M. Wright D. S. Lambert R. M. Chem. Commun. 2006;40:4236–4238. doi: 10.1039/B610316B. PubMed DOI

Lukáč J. et al. . Appl. Catal., B. 2007;74:83–91. doi: 10.1016/j.apcatb.2007.01.014. DOI

Kudo A. Kato H. Tsuji I. Chem. Lett. 2004;33:1534–1539. doi: 10.1246/cl.2004.1534. DOI

Liu H. C. Wang H. Shen J. H. Sun Y. Liu Z. M. Catal. Today. 2008;131:444–449. doi: 10.1016/j.cattod.2007.10.048. DOI

Cunha A. F. Mahata N. Orfao J. M. Figueiredo J. L. Energy Fuels. 2009;23:4047–4050. doi: 10.1021/ef900385e. DOI

Kam R. Selomulya C. Amal R. Scott J. J. Catal. 2010;273(1):73–81. doi: 10.1016/j.jcat.2010.05.004. doi: 10.1016/j.jcat.2010.05.004. DOI

Ng J. Sugii N. Kakushima K. Ahmet P. Tsutsui K. Hattori T. Iwai H. IEICE Electronic Express. 2006;3:316–321. doi: 10.1587/elex.3.316. DOI

Liquang J. Xiaojun S. Baifu X. Baiqi W. Weimin C. Honggang F. J. Solid State Chem. 2004;177:3375–3382. doi: 10.1016/j.jssc.2004.05.064. DOI

Ako R. T. Ekanayake P. Tan A. L. Young D. J. Mater. Chem. Phys. 2016;172:105–112. doi: 10.1016/j.matchemphys.2015.12.066. DOI

Liu Y. Zhou S. Li J. Wang Y. Jiang G. Zhao Zh. Liu B. Gong X. Duan A. Liu J. Wei J. Zhang L. Appl. Catal., B. 2005;168–169:125–131. doi: 10.1016/j.apcata.2004.12.043. DOI

Zhang J. Zhao Z. Wang X. Yu T. Guan J. Yu Zh. Li Zh. Zhigang Z. Zh. J. Phys. Chem. C. 2010;114:18396–18400. doi: 10.1021/jp106648c. DOI

Carter C. B., and Norton M. G., Sols, Gels, and Organic Chemistry, in Ceramic Materials, Springer, New York, NY, 2007

McKee C. T. Walz J. Y. J. Am. Ceram. Soc. 2009;92:916–921. doi: 10.1111/j.1551-2916.2009.02999.x. DOI

Mukai S. R. Nishihara H. Shichi S. Tamon H. Chem. Mater. 2004;16(24):4987–4991. doi: 10.1021/cm0491328. DOI

Borlaf M. Poveda J. M. Moreno R. Colomer M. T. J. Sol-Gel Sci. Technol. 2012;63:408–415. doi: 10.1007/s10971-012-2802-y. DOI

Lee J. Cheng Y. J. Controlled Release. 2006;111:185–192. doi: 10.1016/j.jconrel.2005.12.003. PubMed DOI

Yuan S. Sheng Q. Zhang J. Chen F. Anpo M. Zhang Q. Microporous Mesoporous Mater. 2005;79:93–99. doi: 10.1016/j.micromeso.2004.10.028. DOI

Bakardjieva S. Subrt J. Pulisova P. Marikova M. Szatmary L. Mater. Res. Soc. Symp. Proc. 2011;1352:129–134. doi: 10.1557/opl.2011.1132. doi: 10.1557/opl.2011.1132. DOI

Subrt J. Pulisova P. Bohacek J. Bezdicka P. Plizingrova E. Volfova L. Kupcik J. Mater. Res. Bull. 2014;49:405–412. doi: 10.1016/j.materresbull.2013.09.028. DOI

Plizingrova E. Volfova L. Svora P. Labhsetwar N. Klementova M. Szatmary L. Subrt J. Catal. Today. 2015;240:107–113. doi: 10.1016/j.cattod.2014.04.022. DOI

Bakardjieva S. Fajgar R. Jakubec I. Koci E. Zhigunov A. Chatzisymeon E. Davididou K. Catal. Today. 2019;328:189–201. doi: 10.1016/j.cattod.2018.12.037. DOI

JCPDS PDF-4 database, International Centre for Diffraction Data, Newtown Square, PA, USA, release 2015

Toby B. H. Von Dreele R. B. J. Appl. Crystallogr. 2013;46(2):544–549. doi: 10.1107/S0021889813003531. DOI

Scherrer P. Gottinger Nachrichle. 1918;2:98–100.

Palmer D. C., CrystalMaker, CrystalMaker Software, Ltd, Begbroke, Oxfordshire, England, 2014

Labar J. L. Ultramicroscopy. 2005;103(3):237–249. doi: 10.1016/j.ultramic.2004.12.004. PubMed DOI

Brunauer S. Emmett P. H. Teller E. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI

Barrett E. P. Joyner L. G. Halenda P. P. J. Am. Chem. Soc. 1951;73:373–380. doi: 10.1021/ja01145a126. DOI

Peral J. Ollis D. J. Catal. 1992;136:554–565. doi: 10.1016/0021-9517(92)90085-V. DOI

Al-Ekabi H. Serpone N. Langmuir. 1989;5:250–255. doi: 10.1021/la00085a048. DOI

Theurich J. Lindner M. Bahnemann D. W. Langmuir. 1996;12:6368–6376. doi: 10.1021/la960228t. DOI

Colón G. Hidalgo M. C. Navío J. A. Appl. Catal., A. 2002;231:185–189. doi: 10.1016/S0926-860X(02)00051-0. DOI

Satuf M. L. et al. . Appl. Catal., B. 2008;82:37–49. doi: 10.1016/j.apcatb.2008.01.003. DOI

Grätzel M., Serpone N. and Pelizzetti E., Photocatalysis, Fundamentals and Applications, Wiley, New York, 1989

Ghosh S. Vasudevan A. Rao P. Warrier K. Br. Ceram. Trans. 2001;100:151–154. doi: 10.1179/096797801681378. DOI

Li K. Wei S. Yang W. J. Phys. Chem. Solids. 2011;72:643–647. doi: 10.1016/j.jpcs.2011.02.010. DOI

Ding X. Z. Liu X. H. J. Mater. Res. 1998;13:2556–2559. doi: 10.1557/JMR.1998.0356. DOI

Sadhu S. Poddar P. RSC Adv. 2013;3:10363–10369. doi: 10.1039/C3RA40746B. DOI

Xin Y. Liu H. J. Solid State Chem. 2001;184:3240–3246. doi: 10.1016/j.jssc.2011.10.017. DOI

Trujillo-Navarrete B. del Pilar Haro-Vásquez M. Félix-Navarro R. M. Paraguay Delgado F. Alvarez-Huerta H. Pérez-Sicairos S. Reynoso-Soto E. A. J. Rare Earths. 2017;35:259–270. doi: 10.1016/S1002-0721(17)60909-8. DOI

Li W. Frenkel A. I. Woicik J. C. Ni C. Ismat Shah S. Phys. Rev. B Condens. Matter Mater. Phys. 2005;72:155315. doi: 10.1103/PhysRevB.72.155315. DOI

Liqiang J. Xiaojin S. Baifu X. Baiqi W. Weimin C. Honggang F. J. Solid State Chem. 2004;177(10):3375–3382. doi: 10.1016/j.jssc.2004.05.064. DOI

Schwarzenbach D. Inorg. Chem. 1970;9:2391–2397. doi: 10.1021/ic50093a002. DOI

Xie Y. B. Yuan C. W. Appl. Surf. Sci. 2004;221:17–24. doi: 10.1016/S0169-4332(03)00945-0. DOI

Maleckova M., BSc thesis, Charles University, Prague, 2014, https://is.cuni.cz/webapps/zzp/detail/160373/

Kröger F. A. and Vink H. J., Solid State Physics, vol. 3, Academic, New York, 1956

Edelson L. Glaeser A. J. Am. Ceram. Soc. 1988;71:225–235. doi: 10.1111/j.1151-2916.1988.tb05852.x. DOI

Parker J. Siegel R. J. Mater. Res. 1990;5:1246–1252. doi: 10.1557/JMR.1990.1246. DOI

Plizingrova E E. Klementova M. Bezdicka P. Bohacek J. Barbierikova Z. Dvoranova D. Mazur M. Krysa J. Subrt J. Brezova V. Catal. Today. 2017;281(1):165–180. doi: 10.1016/j.cattod.2016.08.013. DOI

Gupta A. Int. J. Drug Dev. Res. 2012;4:35–40.

Li K. Wei S. Yang W. J. Phys. Chem. Solids. 2011;72:643–647. doi: 10.1016/j.jpcs.2011.02.010. DOI

IUPAC, Compendium of Chem. Technol, The Gold Book, ed. A. D. McNaught and A. Wilkinson, 2nd edn, 2006, ISNB 0-9678550-9-8, 10.1351/goldbook DOI

Gopalan R. Lin Y. Ind. Eng. Chem. Res. 1995;34:1189–1195. doi: 10.1021/ie00043a022. DOI

Kumar K. Keizer S. Burggraaf A. J. Mater. Chem. 1993;3:917–922. doi: 10.1039/JM9930300917. DOI

Wang Z. Chen J. Hu X. Mater. Lett. 2000;43:87–90. doi: 10.1016/S0167-577X(99)00236-0. DOI

Ayers M. Hunt A. Mater. Lett. 1998;34:290–293. doi: 10.1016/S0167-577X(97)00181-X. DOI

Burgos A. M. Langlet M. Thin Solid Films. 1999;349:19–23. doi: 10.1016/S0040-6090(99)00139-X. DOI

Yuan S. Sheng Q. Zhang J. Chen F. Anpo M. Zhang Q. Microporous Mesoporous Mater. 2005;79:93–99. doi: 10.1016/j.micromeso.2004.10.028. DOI

Biesinger M. C. Lau L. W. M. Gerson A. R. Smart R. S. C. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI

Falkowski M. Kunneth Ch. Materlik R. Kersch A. npj Comput. Mater. 2018;73:1–9.

Reddy B. Chowdhury B. Smirniotis P. Appl. Catal., A. 2001;219:53–60. doi: 10.1016/S0926-860X(01)00658-5. DOI

Anandan S. Ikuma Y. Murugesan V. Int. J. Photoenergy. 2012:921412. doi: 10.1155/2012/921412. DOI

Owen S. M., A Guide to Modern Inorganic Chemistry, Willey, New York, 1991, ISBN 05820643920470216948

Kato H. Asakura K. Kudo A. J. Am. Chem. Soc. 2003;125:3082–3089. doi: 10.1021/ja027751g. PubMed DOI

Terzian R. Serpone N. Fox M. A. J. Photochem. Photobiol., A. 1995;90(2–3):125–135. doi: 10.1016/1010-6030(95)04090-3. DOI

Anandan S. et al. . J. Mol. Catal. A: Chem. 2007;266:2149–2157. doi: 10.1016/j.molcata.2006.11.008. DOI

Rabenstein D. L. Anal. Chem. 1971;43:1599–1605. doi: 10.1021/ac60306a038. DOI

Maldotti A. Molinari A. Amadelli R. Chem. Rev. 2002;102:3811–3820. doi: 10.1021/cr010364p. PubMed DOI

Ohtani B. Prieto-Mahaney O. O. Li D. Abe R. J. Photochem. Photobiol., A. 2010;216:179–182. doi: 10.1016/j.jphotochem.2010.07.024. DOI

Tiwari A. and Uzun L., Advanced Functional Materials, ed. A. Tiwari and L. Uzun, Wiley, 2015

Hurum D. C. Agrios A. G. Gray K. A. Rajh T. Thurnauer M. C. J. Phys. Chem. B. 2003;107:4545–4549. doi: 10.1021/jp0273934. DOI

Morris R. Owen J. Cheetham A. J. Phys. Chem. Solids. 1995;56:1297–1303. doi: 10.1016/0022-3697(95)00062-3. DOI

McCulloch I. Heeney M. Bailey C. Genevicius K. McDonald I. Shkunov M. Sparrowe D. Tiemey S. Wagner R. Zhang W. Chabinyc M. L. Kline R. J. McGehee M. D. Toney M. F. Nat. Mater. 2006;5:328–333. doi: 10.1038/nmat1612. PubMed DOI

Liu Y. Zhou S. Li J. Wang Y. Jiang G. Zhao Zh. Liu B. Gong X. Duan A. Liu J. Wei J. Zhang L. Appl. Catal., B. 2005;168–169:125–131. doi: 10.1016/j.apcata.2004.12.043. DOI

Rajeswari Yogamalar N. Chandra Bose A. Appl. Phys. 2011;103:33–42.

Wang C. Pagel R. Dohrmann J. K. Bahnemann D. W. C. R. Chim. 2006;9:761–773. doi: 10.1016/j.crci.2005.02.053. DOI

Ma Z. Li Y. Lv Y. Sa R. Li Q. Wu K. ACS Appl. Mater. Interfaces. 2018;10:39327–39335. doi: 10.1021/acsami.8b12178. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...